Hochschild Cohomology and Deformations of Clifford-Weyl Algebras

被引:5
作者
Musson, Ian M. [1 ]
Pinczon, Georges [2 ]
Ushirobira, Rosane [2 ]
机构
[1] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Univ Bourgogne, Inst Math Bourgogne, F-21078 Dijon, France
关键词
Hochschild cohomology; deformation theory; Clifford algebras; Weyl algebras; Clifford-Weyl algebras; parastatistics; SYMPLECTIC REFLECTION ALGEBRAS; LIE-SUPERALGEBRAS; QUANTIZATION; REPRESENTATIONS;
D O I
10.3842/SIGMA.2009.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete study of the Clifford-Weyl algebra C(n, 2k) from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that C( n, 2k) is rigid when n is even or when k not equal 1. We find all non-trivial deformations of C(2n + 1, 2) and study their representations.
引用
收藏
页数:27
相关论文
共 29 条
[1]   Homology of the invariants of a Weyl Algebra under the action of a finite group [J].
Alev, J ;
Farinati, MA ;
Lambre, T ;
Solotar, AL .
JOURNAL OF ALGEBRA, 2000, 232 (02) :564-577
[2]   THE STRUCTURE OF SL(2,1)-SUPERSYMMETRY - IRREDUCIBLE REPRESENTATIONS AND PRIMITIVE-IDEALS [J].
ARNAL, D ;
BENAMOR, H ;
PINCZON, G .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 165 (01) :17-49
[3]   On Casimir's ghost [J].
Arnaudon, D ;
Bauer, M ;
Frappat, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 187 (02) :429-439
[4]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[5]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[6]   ENVELOPING-ALGEBRAS OF LIE-SUPERALGEBRAS [J].
BEHR, EJ .
PACIFIC JOURNAL OF MATHEMATICS, 1987, 130 (01) :9-25
[7]   SEMISIMPLICITY OF 2-GRADED LIE-ALGEBRAS .2. [J].
DJOKOVIC, DZ ;
HOCHSCHILD, G .
ILLINOIS JOURNAL OF MATHEMATICS, 1976, 20 (01) :134-143
[8]   Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism [J].
Etingof, P ;
Ginzburg, V .
INVENTIONES MATHEMATICAE, 2002, 147 (02) :243-348
[9]  
Flato M., 1989, Journal of Geometry and Physics, V6, P293, DOI 10.1016/0393-0440(89)90018-1
[10]  
FULTON W, 1991, GRADUATE TEXTS MATH, V129, P85003