An overview of full-waveform inversion in exploration geophysics

被引:2181
|
作者
Virieux, J. [1 ]
Operto, S. [2 ]
机构
[1] Univ Grenoble 1, CNRS, Lab Geophys Interne & Tectonophys, IRD, Grenoble, France
[2] Univ Nice Sophia Antipolis, CNRS, IRD, Observ Cote Azur, Villefranche Sur Mer, France
关键词
SEISMIC-REFLECTION DATA; 3D RAY+BORN MIGRATION/INVERSION; PRESTACK DEPTH MIGRATION; SPARSE LINEAR-EQUATIONS; SPECTRAL ELEMENT METHOD; CROSS-HOLE TOMOGRAPHY; FREQUENCY-DOMAIN; FINITE-DIFFERENCE; DIFFRACTION TOMOGRAPHY; COMPLEX STRUCTURES;
D O I
10.1190/1.3238367
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Full-waveform inversion (FWI) is a challenging data-fitting procedure based on full-wavefield modeling to extract quantitative information from seismograms. High-resolution imaging at half the propagated wavelength is expected. Recent advances in high-performance computing and multifold/multicomponent wide-aperture and wide-azimuth acquisitions make 3D acoustic FWI feasible today. Key ingredients of FWI are an efficient forward-modeling engine and a local differential approach, in which the gradient and the Hessian operators are efficiently estimated. Local optimization does not, however, prevent convergence of the misfit function toward local minima because of the limited accuracy of the starting model, the lack of low frequencies, the presence of noise, and the approximate modeling of the wave-physics complexity. Different hierarchical multiscale strategies are designed to mitigate the nonlinearity and ill-posedness of FWI by incorporating progressively shorter wavelengths in the parameter space. Synthetic and real-data case studies address reconstructing various parameters, from V-P and V-S velocities to density, anisotropy, and attenuation. This review attempts to illuminate the state of the art of FWI. Crucial jumps, however, remain necessary to make it as popular as migration techniques. The challenges can be categorized as (1) building accurate starting models with automatic procedures and/or recording low frequencies, (2) defining new minimization criteria to mitigate the sensitivity of FWI to amplitude errors and increasing the robustness of FWI when multiple parameter classes are estimated, and (3) improving computational efficiency by data-compression techniques to make 3D elastic FWI feasible.
引用
收藏
页码:WCC1 / WCC26
页数:26
相关论文
共 50 条
  • [1] Variational full-waveform inversion
    Zhang, Xin
    Curtis, Andrew
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 222 (01) : 406 - 411
  • [2] Application of 2D full-waveform inversion on exploration land data
    Borisov, Dmitry
    Gao, Fuchun
    Williamson, Paul
    Tromp, Jeroen
    GEOPHYSICS, 2020, 85 (02) : R75 - R86
  • [3] Effects of surface scattering in full-waveform inversion
    Bleibinhaus, Florian
    Rondenay, Stephane
    GEOPHYSICS, 2009, 74 (06) : WCC69 - WCC77
  • [4] Multiscale full-waveform inversion based on shot subsampling
    Shi Cai-Wang
    He Bing-Shou
    APPLIED GEOPHYSICS, 2018, 15 (02) : 261 - 270
  • [5] Full-waveform inversion of the Japanese Islands region
    Simute, Saule
    Steptoe, Hamish
    Cobden, Laura
    Gokhberg, Alexey
    Fichtner, Andreas
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2016, 121 (05) : 3722 - 3741
  • [6] REVEAL: A Global Full-Waveform Inversion Model
    Thrastarson, Solvi
    van Herwaarden, Dirk-Philip
    Noe, Sebastian
    Schiller, Carl Josef
    Fichtner, Andreas
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2024, 114 (03) : 1392 - 1406
  • [7] Full-waveform inversion imaging of the human brain
    Guasch, Lluis
    Calderon Agudo, Oscar
    Tang, Meng-Xing
    Nachev, Parashkev
    Warner, Michael
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [8] Blocky regularization schemes for Full-Waveform Inversion
    Guitton, Antoine
    GEOPHYSICAL PROSPECTING, 2012, 60 (05) : 870 - 884
  • [9] Constrained full-waveform inversion by model reparameterization
    Guitton, Antoine
    Ayeni, Gboyega
    Diaz, Esteban
    GEOPHYSICS, 2012, 77 (02) : R117 - R127
  • [10] Frequency-domain Full-waveform Inversion of GPR Data
    Yang, X.
    van der Kruk, J.
    Bikowski, J.
    Kumbhar, P.
    Meles, G. A.
    Vereecken, H.
    NEAR-SURFACE GEOPHYSICS AND ENVIRONMENT PROTECTION, 2012, : 344 - 348