More about powerful numbers

被引:0
作者
Mincu, G. [1 ]
Panaitopol, L. [1 ]
机构
[1] Univ Bucuresti, Fac Matemat, Bucharest 010014, Romania
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2009年 / 52卷 / 04期
关键词
powerful numbers; inequalities;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove in this paper stronger inequalities for the function K(x) which measures the distribution of powerful numbers. We use them in order to study the sequence (u(n))(n) of powerful numbers, proving the inequalities n(2)/c(2) + 0.3n (3)root n(2) <= u(n) <= n(2)/c(2) + 0.5n (3)root n(2) (for c = zeta(3/2)/zeta(3) and n >= 170), u(n+1) - u(n) <= n (for n >= 1316), and u(n+1) - u(n) <= 4n (for n >= 1) We also study the convergence of some number series, drawing information about, the asymptotic behavior of (u(n+1) - u(n))(n).
引用
收藏
页码:451 / 460
页数:10
相关论文
共 50 条
  • [31] On covering numbers of sublevel sets of analytic functions
    Brudnyi, Alexander
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (01) : 72 - 93
  • [32] SHARP BOUNDS FOR THE PSI FUNCTION AND HARMONIC NUMBERS
    Batir, Necdet
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (04): : 917 - 925
  • [33] Condition numbers and error bounds in convex programming
    Coulibaly, A.
    Crouzeix, J. -P.
    MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) : 79 - 113
  • [34] Strong Laws of Large Numbers and Nonparametric Estimation
    Walk, Harro
    RECENT DEVELOPMENTS IN APPLIED PROBABILITY AND STATISTICS, 2010, : 183 - 214
  • [35] Some Properties of the Fuss-Catalan Numbers
    Qi, Feng
    Cerone, Pietro
    MATHEMATICS, 2018, 6 (12):
  • [36] Socioeconomic Status and the Utilization of CT and MRI in Taiwan Understand More, Use More ?
    Li, Ya-Hsin
    Huang, Ya-Ting
    2017 PORTLAND INTERNATIONAL CONFERENCE ON MANAGEMENT OF ENGINEERING AND TECHNOLOGY (PICMET), 2017,
  • [37] Some restrictions on the Betti numbers of a nilpotent Lie algebra
    Niroomand, Peyman
    Russo, Francesco G.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (03) : 403 - 413
  • [38] A CHARACTERIZATION OF A NEW TYPE OF STRONG LAW OF LARGE NUMBERS
    Li, Deli
    Qi, Yongcheng
    Rosalsky, Andrew
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (01) : 539 - 561
  • [39] Inequalities between sums over prime numbers in progressions
    Alkan, Emre
    RESEARCH IN NUMBER THEORY, 2020, 6 (03)
  • [40] Weyl numbers of embeddings of tensor product Besov spaces
    Van Kien Nguyen
    Sickel, Winfried
    JOURNAL OF APPROXIMATION THEORY, 2015, 200 : 170 - 220