Random random walks on the integers mod n

被引:5
作者
Dai, JJ
Hildebrand, MV
机构
[1] IOWA STATE UNIV SCI & TECHNOL,DEPT MATH,AMES,IA 50011
[2] SUNY ALBANY,DEPT MATH & STAT,ALBANY,NY 12222
关键词
random walks; upper bound lemma; Fourier transform; finite groups;
D O I
10.1016/S0167-7152(97)00035-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers typical random walks on the integers mod n such that the random walk is supported on constant k values. This paper extends a result of Hildebrand to show that for any integer n, roughly n(2/(k-1)) steps usually suffice to get the random walk close to uniformly distributed if the k values satisfy some conditions needed for the random walk to get close to uniformly distributed. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:371 / 379
页数:9
相关论文
共 8 条
[1]   RANDOM-WALKS ARISING IN RANDOM NUMBER GENERATION [J].
CHUNG, FRK ;
DIACONIS, P ;
GRAHAM, RL .
ANNALS OF PROBABILITY, 1987, 15 (03) :1148-1165
[2]  
Diaconis P., 1988, GROUP REPRESENTATION
[3]  
Dou C, 1996, ANN PROBAB, V24, P987
[4]  
DOU CCZ, 1992, THESIS MIT
[5]  
Feller W., 1968, INTRO PROBABILITY TH
[6]  
GREENHALGH A, 1989, THESIS MIT STANFORD
[7]  
GREENHALGH A, 1990, UNPUB MODEL RANDOM R
[8]   RANDOM-WALKS SUPPORTED ON RANDOM POINTS OF Z/NZ [J].
HILDEBRAND, M .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (02) :191-203