A general strategy for expanding polymerase function by droplet microfluidics

被引:139
作者
Larsen, Andrew C. [1 ]
Dunn, Matthew R. [1 ,2 ]
Hatch, Andrew [3 ]
Sau, Sujay P. [1 ]
Youngbull, Cody [3 ]
Chaput, John C. [1 ,4 ,5 ]
机构
[1] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA
[2] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA
[3] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA
[4] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
[5] Univ Calif Irvine, Dept Pharmaceut Sci, 147 Bison Modular,Bldg 515, Irvine, CA 92697 USA
关键词
STRUCTURAL DIVERSITY; DIRECTED EVOLUTION; DNA-POLYMERASE; TNA; EFFICIENT; SYSTEM;
D O I
10.1038/ncomms11235
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polymerases that synthesize artificial genetic polymers hold great promise for advancing future applications in synthetic biology. However, engineering natural polymerases to replicate unnatural genetic polymers is a challenging problem. Here we present droplet-based optical polymerase sorting (DrOPS) as a general strategy for expanding polymerase function that employs an optical sensor to monitor polymerase activity inside the microenvironment of a uniform synthetic compartment generated by microfluidics. We validated this approach by performing a complete cycle of encapsulation, sorting and recovery on a doped library and observed an enrichment of similar to 1,200-fold for a model engineered polymerase. We then applied our method to evolve a manganese-independent alpha-L-threofuranosyl nucleic acid (TNA) polymerase that functions with >99% template-copying fidelity. Based on our findings, we suggest that DrOPS is a versatile tool that could be used to evolve any polymerase function, where optical detection can be achieved by Watson-Crick base pairing.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Ultrahigh-throughput screening in drop-based microfluidics for directed evolution [J].
Agresti, Jeremy J. ;
Antipov, Eugene ;
Abate, Adam R. ;
Ahn, Keunho ;
Rowat, Amy C. ;
Baret, Jean-Christophe ;
Marquez, Manuel ;
Klibanov, Alexander M. ;
Griffiths, Andrew D. ;
Weitz, David A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (09) :4004-4009
[2]   Formation of dispersions using "flow focusing" in microchannels [J].
Anna, SL ;
Bontoux, N ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :364-366
[3]   The structural diversity of artificial genetic polymers [J].
Anosova, Irina ;
Kowai, Ewa A. ;
Dunn, Matthew R. ;
Chaput, John C. ;
Van Horn, Wade D. ;
Egli, Martin .
NUCLEIC ACIDS RESEARCH, 2016, 44 (03) :1007-1021
[4]   Unlocking the Sugar "Steric Gate" of DNA Polymerases [J].
Brown, Jessica A. ;
Suo, Zucai .
BIOCHEMISTRY, 2011, 50 (07) :1135-1142
[5]   The Emerging World of Synthetic Genetics [J].
Chaput, John C. ;
Yu, Hanyang ;
Zhang, Su .
CHEMISTRY & BIOLOGY, 2012, 19 (11) :1360-1371
[6]   Directed polymerase evolution [J].
Chen, Tingjian ;
Romesberg, Floyd E. .
FEBS LETTERS, 2014, 588 (02) :219-229
[7]   A short adaptive path from DNA to RNA polymerases [J].
Cozens, Christopher ;
Pinheiro, Vitor B. ;
Vaisman, Alexandra ;
Woodgate, Roger ;
Holliger, Philipp .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (21) :8067-8072
[8]   A real-time fluorescence method for enzymatic characterization of specialized human DNA polymerases [J].
Dorjsuren, Dorjbal ;
Wilson, David M., III ;
Beard, William A. ;
McDonald, John P. ;
Austin, Christopher P. ;
Woodgate, Roger ;
Wilson, Samuel H. ;
Simeonov, Anton .
NUCLEIC ACIDS RESEARCH, 2009, 37 (19)
[9]  
Dunn M. R., 2016, ACS CHEM BIOL, DOI [10.1021/acshembio.5b00949, DOI 10.1021/ACSHEMBIO.5B00949]
[10]   DNA Polymerase-Mediated Synthesis of Unbiased Threose Nucleic Acid (TNA) Polymers Requires 7-Deazaguanine To Suppress G:G Mispairing during TNA Transcription [J].
Dunn, Matthew R. ;
Larsen, Andrew C. ;
Zahurancik, Walter J. ;
Fahmi, Nour Eddine ;
Meyers, Madeline ;
Suo, Zucai ;
Chaput, John C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (12) :4014-4017