SURVIVAL AND EXTINCTION OF EPIDEMICS ON RANDOM GRAPHS WITH GENERAL DEGREE

被引:12
|
作者
Bhamidi, Shankar [1 ]
Nam, Danny [2 ]
Oanh Nguyen [2 ]
Sly, Allan [2 ]
机构
[1] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27515 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
来源
ANNALS OF PROBABILITY | 2021年 / 49卷 / 01期
关键词
Contact process; epidemics; random graph; Galton-Watson tree; phase transition; CONTACT PROCESS; PHASE; TRANSITION; TIME;
D O I
10.1214/20-AOP1451
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we establish the necessary and sufficient criterion for the contact process on Galton-Watson trees (resp., random graphs) to exhibit the phase of extinction (resp., short survival). We prove that the survival threshold lambda(1) for a Galton-Watson tree is strictly positive if and only if its offspring distribution xi has an exponential tail, that is, Ee(c xi) < infinity for some c > 0, settling a conjecture by Huang and Durrett (2018). On the random graph with degree distribution mu, we show that if mu has an exponential tail, then for small enough lambda the contact process with the all-infected initial condition survives for n(1+o(1))-time whp (short survival), while for large enough lambda it runs over e(Theta(n))-time whp (long survival). When mu is subexponential, we prove that the contact process whp displays long survival for any fixed lambda > 0.
引用
收藏
页码:244 / 286
页数:43
相关论文
共 50 条
  • [1] Sub critical epidemics on random graphs
    Nguyen, Oanh
    Sly, Allan
    ADVANCES IN MATHEMATICS, 2025, 462
  • [2] SIR epidemics on random graphs with a fixed degree sequence
    Bohman, Tom
    Picollelli, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (02) : 179 - 214
  • [3] EPIDEMICS ON RANDOM GRAPHS WITH TUNABLE CLUSTERING
    Britton, Tom
    Deijfen, Maria
    Lageras, Andreas N.
    Lindholm, Mathias
    JOURNAL OF APPLIED PROBABILITY, 2008, 45 (03) : 743 - 756
  • [4] Mixed SI (R) epidemic dynamics in random graphs with general degree distributions
    Shang, Yilun
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5042 - 5048
  • [5] Exponential Extinction Time of the Contact Process on Rank-One Inhomogeneous Random Graphs
    Van Hao Can
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (01) : 106 - 130
  • [6] Branching processes and homogenization for epidemics on spatial random graphs
    Bansaye, Vincent
    Salvi, Michele
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [7] RANDOM GRAPHS WITH A GIVEN DEGREE SEQUENCE
    Chatterjee, Sourav
    Diaconis, Persi
    Sly, Allan
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (04): : 1400 - 1435
  • [8] ON THE DEGREE PROPERTIES OF GENERALIZED RANDOM GRAPHS
    Shi, Yi Y.
    Qian, Hong
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2009, 7 (01) : 175 - 187
  • [9] CONTACT PROCESSES ON RANDOM REGULAR GRAPHS
    Lalley, Steven
    Su, Wei
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 2061 - 2097
  • [10] CRITICAL EPIDEMICS, RANDOM GRAPHS, AND BROWNIAN MOTION WITH A PARABOLIC DRIFT
    Van der Hofstad, Remco
    Janssen, A. J. E. M.
    Van Leeuwaarden, Johan S. H.
    ADVANCES IN APPLIED PROBABILITY, 2010, 42 (04) : 1187 - 1206