An energy approach to space-time Galerkin BEM for wave propagation problems

被引:50
作者
Aimi, A. [1 ]
Diligenti, M. [1 ]
Guardasoni, C. [2 ]
Mazzieri, I. [3 ]
Panizzi, S. [1 ]
机构
[1] Univ Parma, Dept Math, I-43100 Parma, Italy
[2] Univ Milan, Dept Math, Milan, Italy
[3] Politecn Milan, Dept Math, I-20133 Milan, Italy
关键词
wave propagation; energy identity; boundary integral equation; weak formulation; Galerkin boundary element method; BOUNDARY-VALUE-PROBLEMS; CONVOLUTION QUADRATURE; NUMERICAL-INTEGRATION; SCATTERING; DIFFRACTION; FORMULATION; EQUATION; CRACK;
D O I
10.1002/nme.2660
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we consider Dirichlet or Neumann wave propagation problems reformulated in terms of boundary integral equations with retarded potential. Starting from a natural energy identity, a space-time weak formulation for I D integral problems is briefly introduced, and continuity and coerciveness properties of the related bilinear form are proved. Then, a theoretical analysis of an extension of the introduced formulation for 2D problems is proposed, pointing out the novelty with respect to existing literature results. At last, various numerical simulations will be presented and discussed, showing unconditional stability of the space-time Galerkin boundary element method applied to the energetic weak problem. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:1196 / 1240
页数:45
相关论文
共 50 条
[41]   An accurate and efficient space-time Galerkin spectral method for the subdiffusion equation [J].
Zeng, Wei ;
Xu, Chuanju .
SCIENCE CHINA-MATHEMATICS, 2024, 67 (10) :2387-2408
[42]   Free-space optical delay line using space-time wave packets [J].
Yessenov, Murat ;
Bhaduri, Basanta ;
Delfyett, Peter J. ;
Abouraddy, Ayman F. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[43]   Attenuated orthotropic time-domain half-space BEM for SH-wave scattering problems [J].
Mojtabazadeh-Hasanlouei, Saeed ;
Panji, Mehdi ;
Kamalian, Mohsen .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2022, 229 (03) :1881-1913
[44]   A SPACE-TIME DISCONTINUOUS GALERKIN TREFFTZ METHOD FOR TIME DEPENDENT MAXWELL'S EQUATIONS [J].
Egger, Herbert ;
Kretzschmar, Fritz ;
Schnepp, Sascha M. ;
Weiland, Thomas .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05) :B689-B711
[45]   Potential evaluation in space-time BIE formulations of 2D wave equation problems [J].
Monegato, G. ;
Scuderi, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 243 :60-79
[46]   Synthesizing broadband propagation-invariant space-time wave packets using transmissive phase plates [J].
Kondakci, H. Esat ;
Yessenov, Murat ;
Meem, Monjurul ;
Reyes, Danielle ;
Thul, Daniel ;
Fairchild, Shermineh Rostami ;
Richardson, Martin ;
Menon, Rajesh ;
Abouraddy, Ayman F. .
OPTICS EXPRESS, 2018, 26 (10) :13628-13638
[47]   Axial Spectral Encoding of Space-Time Wave Packets [J].
Motz, Alyssa M. Allende ;
Yessenov, Murat ;
Abouraddy, Ayman F. .
PHYSICAL REVIEW APPLIED, 2021, 15 (02)
[48]   Omni-resonant space-time wave packets [J].
Shiri, Abbas ;
Yessenov, Murat ;
Aravindakshan, Rohinraj ;
Abouraddy, Ayman F. .
OPTICS LETTERS, 2020, 45 (07) :1774-1777
[49]   Space-time autocorrelation function for reverberation propagation in a dispersive medium [J].
Cohen, Leon .
JOURNAL OF MODERN OPTICS, 2011, 58 (21) :2002-2007
[50]   Experimental Studies of Hadronization and Parton Propagation in the Space-Time Domain [J].
Brooks, W. K. ;
Hakobyan, H. .
NUCLEAR PHYSICS A, 2009, 830 :361C-368C