An energy approach to space-time Galerkin BEM for wave propagation problems

被引:50
作者
Aimi, A. [1 ]
Diligenti, M. [1 ]
Guardasoni, C. [2 ]
Mazzieri, I. [3 ]
Panizzi, S. [1 ]
机构
[1] Univ Parma, Dept Math, I-43100 Parma, Italy
[2] Univ Milan, Dept Math, Milan, Italy
[3] Politecn Milan, Dept Math, I-20133 Milan, Italy
关键词
wave propagation; energy identity; boundary integral equation; weak formulation; Galerkin boundary element method; BOUNDARY-VALUE-PROBLEMS; CONVOLUTION QUADRATURE; NUMERICAL-INTEGRATION; SCATTERING; DIFFRACTION; FORMULATION; EQUATION; CRACK;
D O I
10.1002/nme.2660
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we consider Dirichlet or Neumann wave propagation problems reformulated in terms of boundary integral equations with retarded potential. Starting from a natural energy identity, a space-time weak formulation for I D integral problems is briefly introduced, and continuity and coerciveness properties of the related bilinear form are proved. Then, a theoretical analysis of an extension of the introduced formulation for 2D problems is proposed, pointing out the novelty with respect to existing literature results. At last, various numerical simulations will be presented and discussed, showing unconditional stability of the space-time Galerkin boundary element method applied to the energetic weak problem. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:1196 / 1240
页数:45
相关论文
共 50 条
[21]   A space-time adaptive discontinuous Galerkin scheme [J].
Gassner, Gregor ;
Staudenmaier, Marc ;
Hindenlang, Florian ;
Atak, Muhammed ;
Munz, Claus-Dieter .
COMPUTERS & FLUIDS, 2015, 117 :247-261
[22]   Space-time topology optimization for one-dimensional wave propagation [J].
Jensen, Jakob S. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (5-8) :705-715
[23]   Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems [J].
Feistauer, Miloslav ;
Kucera, Vaclav ;
Najzar, Karel ;
Prokopova, Jaroslava .
NUMERISCHE MATHEMATIK, 2011, 117 (02) :251-288
[24]   An analysis of the discontinuous Galerkin method for wave propagation problems [J].
Hu, FQ ;
Hussaini, MY ;
Rasetarinera, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (02) :921-946
[25]   Classification of propagation-invariant space-time wave packets in free space: Theory and experiments [J].
Yessenov, Murat ;
Bhaduri, Basanta ;
Kondakci, H. Esat ;
Abouraddy, Ayman F. .
PHYSICAL REVIEW A, 2019, 99 (02)
[26]   Space-time discontinuous Galerkin method for dynamics of solids [J].
Aksoy, H. G. ;
Senocak, E. .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008, 24 (12) :1887-1907
[27]   An Approximation Approach for Free Space Wave Propagation [J].
Hasan, M. K. ;
Sulaiman, J. ;
Othman, M. .
2009 INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATICS, VOLS 1 AND 2, 2009, :411-414
[28]   Optimal Runge-Kutta schemes for discontinuous Galerkin space discretizations applied to wave propagation problems [J].
Toulorge, T. ;
Desmet, W. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :2067-2091
[29]   A New BEM for Fractional Nonlinear Generalized Porothermoelastic Wave Propagation Problems [J].
Fahmy, Mohamed Abdelsabour .
CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01) :59-76
[30]   Propagation-Invariant Space-Time Wave Packets from Free Electron Radiation [J].
Tan, Yi Ji ;
Wong, Liang Jie .
2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,