An energy approach to space-time Galerkin BEM for wave propagation problems

被引:50
|
作者
Aimi, A. [1 ]
Diligenti, M. [1 ]
Guardasoni, C. [2 ]
Mazzieri, I. [3 ]
Panizzi, S. [1 ]
机构
[1] Univ Parma, Dept Math, I-43100 Parma, Italy
[2] Univ Milan, Dept Math, Milan, Italy
[3] Politecn Milan, Dept Math, I-20133 Milan, Italy
关键词
wave propagation; energy identity; boundary integral equation; weak formulation; Galerkin boundary element method; BOUNDARY-VALUE-PROBLEMS; CONVOLUTION QUADRATURE; NUMERICAL-INTEGRATION; SCATTERING; DIFFRACTION; FORMULATION; EQUATION; CRACK;
D O I
10.1002/nme.2660
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we consider Dirichlet or Neumann wave propagation problems reformulated in terms of boundary integral equations with retarded potential. Starting from a natural energy identity, a space-time weak formulation for I D integral problems is briefly introduced, and continuity and coerciveness properties of the related bilinear form are proved. Then, a theoretical analysis of an extension of the introduced formulation for 2D problems is proposed, pointing out the novelty with respect to existing literature results. At last, various numerical simulations will be presented and discussed, showing unconditional stability of the space-time Galerkin boundary element method applied to the energetic weak problem. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:1196 / 1240
页数:45
相关论文
共 50 条
  • [1] Energetic Galerkin BEM for wave propagation Neumann exterior problems
    Aimi, A.
    Diligenti, M.
    Panizzi, S.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 58 (02): : 185 - 219
  • [2] A Space-time Galerkin BEM for 2D Exterior Wave Propagation Problems
    Aimi, Alessandra
    Diligenti, Mauro
    Mazzieri, Ilario
    Panizzi, Stefano
    Guardasoni, Chiara
    APPLIED AND INDUSTRIAL MATHEMATICS IN ITALY III, 2009, 82 : 13 - 24
  • [3] The Wave-Matching Boundary Integral Equation - An energy approach to Galerkin BEM for acoustic wave propagation problems
    Hargreaves, Jonathan A.
    Lam, Yiu W.
    WAVE MOTION, 2019, 87 : 4 - 36
  • [4] A stable 3D energetic Galerkin BEM approach for wave propagation interior problems
    Aimi, A.
    Diligenti, M.
    Frangi, A.
    Guardasoni, C.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (12) : 1756 - 1765
  • [5] Numerical integration schemes for space-time hypersingular integrals in energetic Galerkin BEM
    Aimi, Alessandra
    Diligenti, Mauro
    Guardasoni, Chiara
    NUMERICAL ALGORITHMS, 2010, 55 (2-3) : 145 - 170
  • [6] Neumann exterior wave propagation problems: computational aspects of 3D energetic Galerkin BEM
    Aimi, A.
    Diligenti, M.
    Frangi, A.
    Guardasoni, C.
    COMPUTATIONAL MECHANICS, 2013, 51 (04) : 475 - 493
  • [7] IGA-Energetic BEM: An Effective Tool for the Numerical Solution of Wave Propagation Problems in Space-Time Domain
    Aimi, Alessandra
    Boiardi, Ariel Surya
    MATHEMATICS, 2022, 10 (03)
  • [8] A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems
    Kretzschmar, Fritz
    Moiola, Andrea
    Perugia, Ilaria
    Schnepp, Sascha M.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) : 1599 - 1635
  • [9] ENERGY CONSERVING LOCAL DISCONTINUOUS GALERKIN METHODS FOR WAVE PROPAGATION PROBLEMS
    Xing, Yulong
    Chou, Ching-Shan
    Shu, Chi-Wang
    INVERSE PROBLEMS AND IMAGING, 2013, 7 (03) : 967 - 986
  • [10] Neumann exterior wave propagation problems: computational aspects of 3D energetic Galerkin BEM
    A. Aimi
    M. Diligenti
    A. Frangi
    C. Guardasoni
    Computational Mechanics, 2013, 51 : 475 - 493