Existence and nonexistence of hypercyclic semigroups

被引:20
作者
Bernal-Gonzalez, L.
Grosse-Erdmann, K. -G.
机构
[1] Fac Matemat, Dept Anal Matemat, Seville 41080, Spain
[2] Fernuniv, Fachbereich Math, D-58084 Hagen, Germany
关键词
hypercyclic uniformly continuous semigroup of operators; topologically mixing semigroup; Hypercyclicity Criterion; supercyclic semigroup;
D O I
10.1090/S0002-9939-06-08524-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In these notes we provide a new proof of the existence of a hypercyclic uniformly continuous semigroup of operators on any separable infinite-dimensional Banach space that is very different from - and considerably shorter than - the one recently given by Bermudez, Bonilla and Martinon. We also show the existence of a strongly dense family of topologically mixing operators on every separable infinite-dimensional Frechet space. This complements recent results due to Bes and Chan. Moreover, we discuss the Hypercyclicity Criterion for semigroups and we give an example of a separable infinite-dimensional locally convex space which supports no supercyclic strongly continuous semigroup of operators.
引用
收藏
页码:755 / 766
页数:12
相关论文
共 44 条
[1]  
[Anonymous], LINEAR OPERATORS 1
[2]   Existence of hypercyclic operators on topological vector spaces [J].
Ansari, SI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 148 (02) :384-390
[3]   Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces [J].
Bermúdez, T ;
Bonilla, A ;
Conejero, JA ;
Peris, A .
STUDIA MATHEMATICA, 2005, 170 (01) :57-75
[4]   On hypercyclicity and supercyclicity criteria [J].
Bermúdez, T ;
Bonilla, A ;
Peris, A .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (01) :45-54
[5]   On the existence of chaotic and hypercyclic semigroups on banach spaces [J].
Bermúdez, T ;
Bonilla, A ;
Martinón, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (08) :2435-2441
[6]   On hypercyclic operators on Banach spaces [J].
Bernal-González, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) :1003-1010
[7]   The Hypercyclicity Criterion for sequences of operators [J].
Bernal-González, L ;
Grosse-Erdmann, KG .
STUDIA MATHEMATICA, 2003, 157 (01) :17-32
[8]   Exponential type of hypercyclic entire functions [J].
Bernal-González, L ;
Bonilla, A .
ARCHIV DER MATHEMATIK, 2002, 78 (04) :283-290
[9]   Approximation by chaotic operators and by conjugate classes [J].
Bès, J ;
Chan, KC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 284 (01) :206-212
[10]  
Bès J, 2003, HOUSTON J MATH, V29, P195