In these notes we provide a new proof of the existence of a hypercyclic uniformly continuous semigroup of operators on any separable infinite-dimensional Banach space that is very different from - and considerably shorter than - the one recently given by Bermudez, Bonilla and Martinon. We also show the existence of a strongly dense family of topologically mixing operators on every separable infinite-dimensional Frechet space. This complements recent results due to Bes and Chan. Moreover, we discuss the Hypercyclicity Criterion for semigroups and we give an example of a separable infinite-dimensional locally convex space which supports no supercyclic strongly continuous semigroup of operators.
机构:
Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, SpainUniv La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, Spain
Bermúdez, T
;
Bonilla, A
论文数: 0引用数: 0
h-index: 0
机构:Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, Spain
Bonilla, A
;
Peris, A
论文数: 0引用数: 0
h-index: 0
机构:Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, Spain
机构:
Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, SpainUniv La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, Spain
Bermúdez, T
;
Bonilla, A
论文数: 0引用数: 0
h-index: 0
机构:Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, Spain
Bonilla, A
;
Peris, A
论文数: 0引用数: 0
h-index: 0
机构:Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, Spain