Electron Scattering Cross Section Data of Supercritical CO2 Clusters

被引:0
作者
Haque, Farhina [1 ]
Wei, Jia [2 ]
Graber, Lukas [2 ]
Park, Chanyeop [1 ]
机构
[1] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
来源
2020 IEEE ELECTRICAL INSULATION CONFERENCE (EIC) | 2020年
关键词
Supercritical fluids; collision cross section; dielectric strength; density fluctuation; TEMPERATURE;
D O I
10.1109/eic47619.2020.9158748
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Density fluctuations caused by clustering occurs during phase transition near the critical point, beyond which is the supercritical phase. Supercritical phase is the intermediate state where fluids show both liquid and gas properties. The high dielectric strength provided by the high density of supercritical fluid exhibits a steep degradation at the phase change due to the so-called clustering effect. In this paper, the dielectric properties of SC CO2 have been studied. Based on the dielectric strength analysis method used for gas mixtures, the electron-scattering cross section data of SCF CO2 clusters is utilized, which are modified from those of gaseous CO2 assuming various cluster sizes, to estimate the density-fluctuation-dependent dielectric strength of SCF CO2. The electron energy loss models of distinct electron energy levels have been utilized to determine the geometrical electron scattering cross section data of SCF CO2 clusters with various cluster sizes and impinging electron energies.
引用
收藏
页码:144 / 147
页数:4
相关论文
共 50 条
  • [1] Electron ionization of bare neon clusters and neon clusters doped with CO2 molecules
    Holzer, Georg Alexander
    Meissner, Rebecca
    Ribar, Anita
    Bayer, Andreas
    Neustetter, Michael
    Denifl, Stephan
    PHYSICAL REVIEW A, 2020, 101 (04)
  • [2] Solubility of functional compounds in supercritical CO2: Data evaluation and modelling
    Antonie, Paul
    Pereira, Camila G.
    JOURNAL OF FOOD ENGINEERING, 2019, 245 : 131 - 138
  • [3] Processing naproxen with supercritical CO2
    Montes, A.
    Bendel, A.
    Kuerti, R.
    Gordillo, M. D.
    Pereyra, C.
    Martinez de la Ossa, E. J.
    JOURNAL OF SUPERCRITICAL FLUIDS, 2013, 75 : 21 - 29
  • [4] Supercritical CO2 applications in microfluidic systems
    Kazan, Aslihan
    MICROFLUIDICS AND NANOFLUIDICS, 2022, 26 (09)
  • [5] Experiments on supercritical CO2 adsorption in briquettes
    Wu, Di
    Liu, Xueying
    Sun, Keming
    Xiao, Xiaochun
    Xin, Liwei
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2019, 41 (08) : 1005 - 1011
  • [6] Solvation of Esters and Ketones in Supercritical CO2
    Kajiya, Daisuke
    Imanishi, Masayoshi
    Saitow, Ken-ichi
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (04) : 785 - 792
  • [7] Supercritical CO2 applications in microfluidic systems
    Aslihan Kazan
    Microfluidics and Nanofluidics, 2022, 26
  • [8] Microbial Growth under Supercritical CO2
    Peet, Kyle C.
    Freedman, Adam J. E.
    Hernandez, Hector H.
    Britto, Vanya
    Boreham, Chris
    Ajo-Franklin, Jonathan B.
    Thompson, Janelle R.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (08) : 2881 - 2892
  • [9] Improved Density Correlation for Supercritical CO2
    Wang, Zhiyuan
    Sun, Baojiang
    Yan, Linlin
    CHEMICAL ENGINEERING & TECHNOLOGY, 2015, 38 (01) : 75 - 84
  • [10] Sol-gel processing of VO2 (M) in supercritical CO2 and supercritical CO2/ionic liquid biphasic system
    Nazari, S.
    Charpentier, P. A.
    JOURNAL OF SUPERCRITICAL FLUIDS, 2020, 165