IMAGE QUALITY ASSESSMENT BASED ON CONTOUR AND REGION

被引:0
作者
Huang, Chen [1 ,2 ]
Jiang, Ming [1 ,2 ]
Jiang, Tingting [2 ,3 ]
机构
[1] Peking Univ, LMAM, Sch Math Sci, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[2] Peking Univ, Cooperat Medianet Innovat Ctr, Beijing 100871, Peoples R China
[3] Peking Univ, NELVT, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
Image quality assessment; Contour detection; Image segmentation;
D O I
10.4208/jcm.1611-m2016-0534
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Image Quality Assessment (IQA) is a fundamental problem in image processing. It is a common principle that human vision is hierarchical: we first perceive global structural information such as contours then focus on local regional details if necessary. Following this principle, we propose a novel framework for IQA by quantifying the degenerations of structural information and region content separately, and mapping both to obtain the objective score. The structural information can be obtained as contours by contour detection techniques. Experiments are conducted to demonstrate its performance in comparison with multiple state-of-the-art methods on two large scale datasets.
引用
收藏
页码:705 / 722
页数:18
相关论文
共 40 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
[Anonymous], 2004, CABLE NETWORKS TRANS
[3]  
[Anonymous], 2004, Int. J. Comput. Vis., DOI [DOI 10.1023/B:VISI.0000029664.99615.94, 10.1023/B:VISI.0000029664.99615.94]
[4]  
[Anonymous], 1993, SIGN SYST COMP 1993
[5]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[6]  
Belongie S, 2006, MODEL SIMUL SCI ENG, P81
[7]  
Bosch A, 2007, IEEE I CONF COMP VIS, P1863
[8]   VSNR: A wavelet-based visual signal-to-noise ratio for natural images [J].
Chandler, Damon M. ;
Hemami, Sheila S. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (09) :2284-2298
[9]   Image quality assessment based on a degradation model [J].
Damera-Venkata, N ;
Kite, TD ;
Geisler, WS ;
Evans, BL ;
Bovik, AC .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (04) :636-650
[10]   Efficient graph-based image segmentation [J].
Felzenszwalb, PF ;
Huttenlocher, DP .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) :167-181