Neuroimaging-Based Deep Learning in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder

被引:3
作者
Song, Jae-Won [1 ]
Yoon, Na-Rae [1 ]
Jang, Soo-Min [1 ]
Lee, Ga-Young [2 ]
Kim, Bung-Nyun [1 ]
机构
[1] Seoul Natl Univ Hosp, Dept Child & Adolescent Psychiat, 101 Daehak Ro, Seoul 03080, South Korea
[2] Seoul Natl Univ Hosp, Autism & Dev Disorder Ctr, Seoul, South Korea
来源
JOURNAL OF THE KOREAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY | 2020年 / 31卷 / 03期
基金
新加坡国家研究基金会;
关键词
Neuroimaging; Neurodevelopmental disorder; Autism spectrum disorder; Attention-deficit/hyperactivity disorder; Deep learning; Review; PRESCHOOL-CHILDREN; PATTERN-ANALYSIS; CLASSIFICATION; METAANALYSIS; PREVALENCE; BIOMARKERS; CONFOUNDS; DIAGNOSIS; SYMPTOMS; BEHAVIOR;
D O I
10.5765/jkacap.200021
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Deep learning (DL) is a kind of machine learning technique that uses artificial intelligence to identify the characteristics of given data and efficiently analyze large amounts of information to perform tasks such as classification and prediction. In the field of neuroimaging of neurodevelopmental disorders, various biomarkers for diagnosis, classification, prognosis prediction, and treatment response prediction have been examined; however, they have not been efficiently combined to produce meaningful results. DL can be applied to overcome these limitations and produce clinically helpful results. Here, we review studies that combine neurodevelopmental disorder neuroimaging and DL techniques to explore the strengths, limitations, and future directions of this research area.
引用
收藏
页码:97 / 104
页数:8
相关论文
共 60 条
[1]   The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience [J].
Acuna, Carlos .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2012, 6
[2]   Diagnosis of Autism Spectrum Disorders in Young Children Based on Resting-State Functional Magnetic Resonance Imaging Data Using Convolutional Neural Networks [J].
Aghdam, Maryam Akhavan ;
Sharifi, Arash ;
Pedram, Mir Mohsen .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (06) :899-918
[3]   Decoding cognitive concepts from neuroimaging data using multivariate pattern analysis [J].
Alizadeh, Sarah ;
Jamalabadi, Hamidreza ;
Schoenauer, Monika ;
Leibold, Christian ;
Gais, Steffen .
NEUROIMAGE, 2017, 159 :449-458
[4]   Functional connectivity magnetic resonance imaging classification of autism [J].
Anderson, Jeffrey S. ;
Nielsen, Jared A. ;
Froehlich, Alyson L. ;
DuBray, Molly B. ;
Druzgal, T. Jason ;
Cariello, Annahir N. ;
Cooperrider, Jason R. ;
Zielinski, Brandon A. ;
Ravichandran, Caitlin ;
Fletcher, P. Thomas ;
Alexander, Andrew L. ;
Bigler, Erin D. ;
Lange, Nicholas ;
Lainhart, Janet E. .
BRAIN, 2011, 134 :3739-3751
[5]   Diagnosis of autism [J].
Baird, G ;
Cass, H ;
Slonims, V .
BRITISH MEDICAL JOURNAL, 2003, 327 (7413) :488-493
[6]   Feature-Based Fusion of Medical Imaging Data [J].
Calhoun, Vince D. ;
Adali, Tuelay .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2009, 13 (05) :711-720
[7]   BEHAVIOR PROBLEMS IN PRESCHOOL-CHILDREN - A REVIEW OF RECENT RESEARCH [J].
CAMPBELL, SB .
JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY, 1995, 36 (01) :113-149
[8]   Deep Learning: A Primer for Radiologists [J].
Chartrand, Gabriel ;
Cheng, Phillip M. ;
Vorontsov, Eugene ;
Drozdzal, Michal ;
Turcotte, Simon ;
Pal, Christopher J. ;
Kadoury, Samuel ;
Tang, An .
RADIOGRAPHICS, 2017, 37 (07) :2113-2131
[9]   Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity-A multi-center study [J].
Chen, Heng ;
Duan, Xujun ;
Liu, Feng ;
Lu, Fengmei ;
Ma, Xujing ;
Zhang, Youxue ;
Uddin, Lucina Q. ;
Chen, Huafu .
PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2016, 64 :1-9
[10]   Machine learning in neuroimaging: Progress and challenges [J].
Davatzikos, Christos .
NEUROIMAGE, 2019, 197 :652-656