Modeling graphs using dot product representations

被引:2
|
作者
Scheinerman, Edward R. [1 ]
Tucker, Kimberly [2 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[2] Harvey Mudd Coll, Dept Math, Claremont, CA 91711 USA
关键词
Social networks; Dimension reduction; Vector representations of graphs;
D O I
10.1007/s00180-009-0158-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a simple (weighted) graph, or a collection of graphs on a common vertex set, we seek an assignment of vectors to the vertices such that the dot products of these vectors approximate the weight/frequency of the edges. By transforming vertices into (low dimensional) vectors, one can bring geometric methods to bear in the analysis of the graph(s). We illustrate our approach on the Mathematicians Collaboration Graph [Grossman (1996) The ErdAs number project, http://www.oakland.edu/enp ] and the times series of Interstate Alliance Graphs (Gibler and Sarkees in J Peace Res 41(2):211-222, 2004).
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] Learning representations for object classification using multi-stage optimal component analysis
    Wu, Yiming
    Liu, Xiuwen
    Mio, Washington
    NEURAL NETWORKS, 2008, 21 (2-3) : 214 - 221
  • [32] Automatic Generation of Product Association Networks Using Latent Dirichlet Allocation
    Sanchez-Monzon, Javier
    Putzke, Johannes
    Fischbach, Kai
    2ND COLLABORATIVE INNOVATION NETWORKS CONFERENCE (COINS2010), 2011, 26
  • [33] HANDLING CATEGORICAL FEATURES WITH MANY LEVELS USING A PRODUCT PARTITION MODEL
    Criscuolo, Tulio L.
    Assuncao, Renato M.
    Loschi, Rosangela H.
    Meira Jr, Wagner
    Cruz-Reyes, Danna
    ANNALS OF APPLIED STATISTICS, 2023, 17 (01) : 786 - 814
  • [34] Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions
    Abedi, Vahideh Sadat
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 536
  • [35] Spherical Linear Diophantine Fuzzy Graphs: Unleashing the Power of Fuzzy Logic for Uncertainty Modeling and Real-World Applications
    Parimala, Mani
    Jafari, Saeid
    AXIOMS, 2024, 13 (03)
  • [36] MODELING HETEROGENEITY IN NETWORKS USING POLYNOMIAL CHAOS
    Rajendran, Karthikeyan
    Tsoumanis, Andreas C.
    Siettos, Constantinos I.
    Laing, Carlo R.
    Kevrekidis, Ioannis G.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2016, 14 (03) : 291 - 302
  • [37] You Can't See Me: Anonymizing Graphs Using the Szemeredi Regularity Lemma
    Foffano, Daniele
    Rossi, Luca
    Torsello, Andrea
    FRONTIERS IN BIG DATA, 2019, 2
  • [38] Integrative Classification Using Structural Equation Modeling of Homeostasis
    Fang, Hong-Bin
    Huang, Hengzhen
    Yuan, Ao
    Fan, Ruzong
    Tan, Ming T.
    STATISTICS IN BIOSCIENCES, 2024, 16 (03) : 742 - 760
  • [39] Modeling Twitter as Weighted Complex Networks Using Retweets
    Hrishiah, Muhammad
    Safar, Maytham
    Mahdi, Khaled
    PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, 2016, : 701 - 702
  • [40] Assembling Creative Teams in New Product Development Using Creative Team Familiarity
    Sosa, Manuel E.
    Marle, Franck
    JOURNAL OF MECHANICAL DESIGN, 2013, 135 (08)