Modeling graphs using dot product representations

被引:2
|
作者
Scheinerman, Edward R. [1 ]
Tucker, Kimberly [2 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[2] Harvey Mudd Coll, Dept Math, Claremont, CA 91711 USA
关键词
Social networks; Dimension reduction; Vector representations of graphs;
D O I
10.1007/s00180-009-0158-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a simple (weighted) graph, or a collection of graphs on a common vertex set, we seek an assignment of vectors to the vertices such that the dot products of these vectors approximate the weight/frequency of the edges. By transforming vertices into (low dimensional) vectors, one can bring geometric methods to bear in the analysis of the graph(s). We illustrate our approach on the Mathematicians Collaboration Graph [Grossman (1996) The ErdAs number project, http://www.oakland.edu/enp ] and the times series of Interstate Alliance Graphs (Gibler and Sarkees in J Peace Res 41(2):211-222, 2004).
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Modeling graphs using dot product representations
    Edward R. Scheinerman
    Kimberly Tucker
    Computational Statistics, 2010, 25 : 1 - 16
  • [2] Modeling Bipartite Graphs Using Hierarchical Structures
    Chua, Freddy Chong Tat
    Lim, Ee-Peng
    2011 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2011), 2011, : 94 - 101
  • [3] Compressed representations for web and social graphs
    Cecilia Hernández
    Gonzalo Navarro
    Knowledge and Information Systems, 2014, 40 : 279 - 313
  • [4] Computing NodeTrix Representations of Clustered Graphs
    Da Lozzo, Giordano
    Di Battista, Giuseppe
    Frati, Fabrizio
    Patrignani, Maurizio
    GRAPH DRAWING AND NETWORK VISUALIZATION (GD 2016), 2016, 9801 : 107 - 120
  • [5] Compressed representations for web and social graphs
    Hernandez, Cecilia
    Navarro, Gonzalo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2014, 40 (02) : 279 - 313
  • [6] Low-time-complexity document clustering using memristive dot product engine
    Zhou, Houji
    Li, Yi
    Miao, Xiangshui
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (02)
  • [7] Kronecker Graphs: An Approach to Modeling Networks
    Leskovec, Jure
    Chakrabarti, Deepayan
    Kleinberg, Jon
    Faloutsos, Christos
    Ghahramani, Zoubin
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 985 - 1042
  • [8] Truss decomposition using triangle graphs
    Mohsen Rezvani
    Mojtaba Rezvani
    Soft Computing, 2022, 26 : 55 - 68
  • [9] Truss decomposition using triangle graphs
    Rezvani, Mohsen
    Rezvani, Mojtaba
    SOFT COMPUTING, 2022, 26 (01) : 55 - 68
  • [10] Denoising of Network Graphs using Topology Diffusion
    Aghagolzadeh, Mohammad
    Al-Qizwini, Mohammed
    Radha, Hayder
    CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 728 - 732