Cu supported Fe-SiO2 nanocomposites for reverse water gas shift reaction

被引:35
作者
Gonzalez-Castano, M. [1 ]
Navarro de Miguel, J. C. [2 ]
Sinha, F. [1 ]
Ghomsi Wabo, S. [3 ]
Klepel, O. [3 ]
Arellano-Garcia, H. [1 ]
机构
[1] Brandenburg Univ Technol BTU Cottbus Senftenberg, Dept Proc & Plant Technol, Pl Deutsch 1, D-03046 Cottbus, Germany
[2] Univ Sevilla US, Inst Mat Sci Seville, Consejo Super Invest Cient CSIC, Dept Inorgan Chem, Ave Americo Vespucio 49, Seville 41092, Spain
[3] Brandenburg Univ Technol Cottbus Senftenberg, Inst Mat Chem, Univ Pl 1, D-01968 Senftenberg, Germany
关键词
Cu catalysts; Fe-doped silica; Nanocomposites; Reverse water gas shift reaction; MESOSTRUCTURED SILICA NANOPARTICLES; HETEROGENEOUS CATALYSTS; METHANOL SYNTHESIS; CO2; ADSORPTION; SURFACE; NI; HYDROGENATION; COPPER; OXIDE; FE;
D O I
10.1016/j.jcou.2021.101493
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work analyses the catalytic activity displayed by Cu/SiO2, Cu-Fe/SiO2 and Cu/FSN (Fe-SiO2 nanocomposite) catalysts for the Reverse Water Gas Shift reaction. Compared to Cu/SiO2 catalyst, the presence of Fe resulted on higher CO?s selectivity and boosted resistances against the constitution of the deactivation carbonaceous species. Regarding the catalytic performance however, the extent of improvement attained through incorporation Fe species strongly relied on the catalysts' configuration. At 30 L/gh and H-2:CO2 ratios = 3, the performance of the catalysts? series increased according to the sequence: Cu/SiO2 < Cu-Fe/SiO2 << Cu/FSN. The remarkable catalytic enhancements provided by Fe-SiO2 nanocomposites under different RWGS reaction atmospheres were associated to enhanced catalyst surface basicity's and stronger Cu-support interactions. The catalytic promotion achieved by Fe-SiO2 nanocomposites argue an optimistic prospective for nanocomposite catalysts within future CO2-valorising technologies.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Reverse water-gas shift reaction at the Cu/ZnO interface: Influence of the Cu/Zn ratio on structure-activity correlations [J].
Alvarez Galvan, Consuelo ;
Schumann, Julia ;
Behrens, Malte ;
Garcia Fierro, Jose Luis ;
Schloegl, Robert ;
Frei, Elias .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 195 :104-111
[2]   CO2 methanation over Ni-promoted mesostructured silica nanoparticles: Influence of Ni loading and water vapor on activity and response surface methodology studies [J].
Aziz, M. A. A. ;
Jalil, A. A. ;
Triwahyono, S. ;
Saad, M. W. A. .
CHEMICAL ENGINEERING JOURNAL, 2015, 260 :757-764
[3]  
Bergeret G., Handb Heterog Catal, P738, DOI DOI 10.1002/9783527610044.HETCAT0038
[4]   SYNERGY BETWEEN COPPER AND ZINC-OXIDE DURING METHANOL SYNTHESIS - TRANSFER OF ACTIVATING SPECIES [J].
BURCH, R ;
CHAPPELL, RJ ;
GOLUNSKI, SE .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1989, 85 :3569-3578
[5]   Study of CO2 adsorption on iron oxide doped MCM-41 [J].
Chanapattharapol, Kingkaew Chayakul ;
Krachuamram, Somkiat ;
Youngme, Sujittra .
MICROPOROUS AND MESOPOROUS MATERIALS, 2017, 245 :8-15
[6]   Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction [J].
Chen, CS ;
Cheng, WH ;
Lin, SS .
APPLIED CATALYSIS A-GENERAL, 2004, 257 (01) :97-106
[7]   Enhanced activity and stability of a Cu/SiO2 catalyst for the reverse water gas shift reaction by an iron promoter [J].
Chen, CS ;
Cheng, WH ;
Lin, SS .
CHEMICAL COMMUNICATIONS, 2001, (18) :1770-1771
[8]   MECHANISM OF METHANOL SYNTHESIS FROM CO2/CO/H2 MIXTURES OVER COPPER/ZINC OXIDE/ALUMINA CATALYSTS - USE OF C-14-LABELED REACTANTS [J].
CHINCHEN, GC ;
DENNY, PJ ;
PARKER, DG ;
SPENCER, MS ;
WHAN, DA .
APPLIED CATALYSIS, 1987, 30 (02) :333-338
[9]   Surface structure-activity relationships of Cu/ZnGaOX catalysts in low temperature water-gas shift (WGS) reaction for production of hydrogen fuel [J].
Dasireddy, Venkata D. B. C. ;
Rubin, Karmina ;
Pohar, Andrej ;
Likozar, Blaz .
ARABIAN JOURNAL OF CHEMISTRY, 2020, 13 (04) :5060-5074
[10]   CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels [J].
Daza, Yolanda A. ;
Kuhn, John N. .
RSC ADVANCES, 2016, 6 (55) :49675-49691