A PT-invariant potential with complex QES eigenvalues

被引:147
作者
Khare, A
Mandal, BP
机构
[1] SN Bose Natl Ctr Basic Sci, Kolkata 700091, W Bengal, India
[2] Inst Phys, Bhubaneswar 751005, Orissa, India
关键词
D O I
10.1016/S0375-9601(00)00409-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the quasi-exactly solvable eigenvalues of the Schrodinger equation for the PT-invariant potential V(x)= -(zeta cosh2x- iM)(2) are complex conjugate pairs in case the parameter M is an even integer while they are real in case iM is an odd integer. We also show that whereas the PT symmetry is spontaneously broken in the former case, it is unbroken in the latter case. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:53 / 56
页数:4
相关论文
共 18 条
[1]   A new PT-symmetric complex Hamiltonian with a real spectrum [J].
Bagchi, B ;
Roychoudhury, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (01) :L1-L3
[2]   Complex periodic potentials with real band spectra [J].
Bender, CM ;
Dunne, GV ;
Meisinger, PN .
PHYSICS LETTERS A, 1999, 252 (05) :272-276
[3]   ANALYTIC CONTINUATION OF EIGENVALUE PROBLEMS [J].
BENDER, CM ;
TURBINER, A .
PHYSICS LETTERS A, 1993, 173 (06) :442-446
[4]   Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian [J].
Bender, CM ;
Dunne, GV .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (10) :4616-4621
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[7]   Quasi-exactly solvable quartic potential [J].
Bender, CM ;
Boettcher, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (14) :L273-L277
[8]   Quasi-exactly solvable systems and orthogonal polynomials [J].
Bender, CM ;
Dunne, GV .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (01) :6-11
[9]  
BENDER CM, QUANTPH9906057
[10]  
BENDER CM, HEPTH98021884