A class of asymptotically unbiased semi-parametric estimators of the tall index

被引:25
作者
Caeiro, F
Gomes, MI
机构
[1] Univ Lisbon, Fac Ciencias, DEIO, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, CEAUL, P-1749016 Lisbon, Portugal
[3] Univ Nova Lisboa, FCT, Dept Matemat, P-1200 Lisbon, Portugal
关键词
statistical theory of extremes; semi-parametric estimation;
D O I
10.1007/BF02595711
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider a class of consistent semi-parametric estimators of a positive tail index gamma, parameterized in a tuning or control parameter alpha. Such a control parameter enables us to have access, for any available sample, to an estimator of gamma with a null dominant component of asymptotic bias, and with a reasonably flat Mean Squared Error pattern, as a function of kappa, the number of top order statistics considered. Moreover, we are able to achieve a high efficiency relatively to the classical Hill estimator, provided we may have access to a larger number of top order statistics than the number needed for optimal estimation through the Hill estimator.
引用
收藏
页码:345 / 364
页数:20
相关论文
共 16 条
[1]  
[Anonymous], 1999, EXTREMES, DOI DOI 10.1023/A:1009920327187
[2]  
Beirlant J., 1999, EXTREMES, V2, P177, DOI DOI 10.1023/A:1009975020370
[3]   Selecting the optimal sample fraction in univariate extreme value estimation [J].
Drees, H ;
Kaufmann, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 75 (02) :149-172
[4]  
Feuerverger A, 1999, ANN STAT, V27, P760
[5]  
Geluk JL., 1987, Regular Variation, Extensions and Tauberian Theorems
[6]   The limited distribution of the maximum term of a random series [J].
Gnedenko, B .
ANNALS OF MATHEMATICS, 1943, 44 :423-453
[7]   Generalizations of the Hill estimator - asymptotic versus finite sample behaviour [J].
Gomes, MI ;
Martins, MJ .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 93 (1-2) :161-180
[8]  
Gomes MI, 2000, EXTREMES, V3, P207
[9]   The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction [J].
M. Ivette Gomes ;
Orlando Oliveira .
Extremes, 2001, 4 (4) :331-358
[10]  
Haan L.D., 1998, STAT NEERL, V52, P60