A class of asymptotically unbiased semi-parametric estimators of the tall index

被引:24
作者
Caeiro, F
Gomes, MI
机构
[1] Univ Lisbon, Fac Ciencias, DEIO, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, CEAUL, P-1749016 Lisbon, Portugal
[3] Univ Nova Lisboa, FCT, Dept Matemat, P-1200 Lisbon, Portugal
关键词
statistical theory of extremes; semi-parametric estimation;
D O I
10.1007/BF02595711
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider a class of consistent semi-parametric estimators of a positive tail index gamma, parameterized in a tuning or control parameter alpha. Such a control parameter enables us to have access, for any available sample, to an estimator of gamma with a null dominant component of asymptotic bias, and with a reasonably flat Mean Squared Error pattern, as a function of kappa, the number of top order statistics considered. Moreover, we are able to achieve a high efficiency relatively to the classical Hill estimator, provided we may have access to a larger number of top order statistics than the number needed for optimal estimation through the Hill estimator.
引用
收藏
页码:345 / 364
页数:20
相关论文
共 16 条