The 3-Sylow subgroup of the tame kernel of real number fields

被引:10
作者
Qin, Hourong [1 ]
Zhou, Haiyan [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金; 美国国家科学基金会;
关键词
D O I
10.1016/j.jpaa.2006.05.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a cubic cyclic field with exactly one ramified prime p, p > 7, or F a real quadratic field with d not equivalent to 6 (mod 9). In this paper, we study the 3-primary part of K2OF. If 3 does not divide the class number of F, we get some results about the 9-rank of K2OF. In particular, in the case of a cubic cyclic field F with only one ramified prime p > 7, we prove that four conclusions concerning the 3-primary part of K2OF, obtained by J. Browkin by numerical computations for primes p, 7 <= p <= 5000, are true in general. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 16 条
[11]  
QIN HR, 1995, ACTA ARITH, V72, P323
[12]   RELATIONS BETWEEN K2 AND GALOIS COHOMOLOGY [J].
TATE, J .
INVENTIONES MATHEMATICAE, 1976, 36 :257-274
[13]  
Washington L.C., 1982, INTRO CYCLOTOMIC FIE
[14]   The structure of the tame kernels of quadratic number fields (II) [J].
Yin, XB ;
Qin, HR ;
Zhu, QS .
ACTA ARITHMETICA, 2005, 116 (03) :217-262
[15]  
[No title captured]
[16]  
[No title captured]