The 3-Sylow subgroup of the tame kernel of real number fields

被引:10
作者
Qin, Hourong [1 ]
Zhou, Haiyan [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
D O I
10.1016/j.jpaa.2006.05.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a cubic cyclic field with exactly one ramified prime p, p > 7, or F a real quadratic field with d not equivalent to 6 (mod 9). In this paper, we study the 3-primary part of K2OF. If 3 does not divide the class number of F, we get some results about the 9-rank of K2OF. In particular, in the case of a cubic cyclic field F with only one ramified prime p > 7, we prove that four conclusions concerning the 3-primary part of K2OF, obtained by J. Browkin by numerical computations for primes p, 7 <= p <= 5000, are true in general. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 16 条
[1]  
Browkin J, 2005, MATH COMPUT, V74, P967
[2]  
BROWKIN J, 1992, J REINE ANGEW MATH, V432, P135
[3]  
Browkin J., 1982, BANACH CENT PUBL, V9, P187
[4]   K2 AND SOME CLASSICAL CONJECTURES IN ALGEBRAIC NUMBER THEORY [J].
COATES, J .
ANNALS OF MATHEMATICS, 1972, 95 (01) :99-&
[5]  
KEuNE F., 1989, P RES S K THEORY ITS, V2, P625
[6]  
MILNOR J, 1971, ANN MATH STUD, V72
[7]  
NEUKIRCH J, 1986, GRUNDLEHRENDER MATH, V280
[8]   The structure of the tame kernels of quadratic number fields (I) [J].
Qin, HR .
ACTA ARITHMETICA, 2004, 113 (03) :203-240
[9]  
Qin HR, 2001, J REINE ANGEW MATH, V530, P105
[10]  
QIN HR, 1995, ACTA ARITH, V69, P153