Refinement of insulator-based dielectrophoresis

被引:42
作者
Crowther, Claire V. [1 ]
Hayes, Mark A. [1 ]
机构
[1] Arizona State Univ, Sch Mol Sci, Mail Stop 1604, Tempe, AZ 85287 USA
基金
美国国家卫生研究院;
关键词
ELECTRODELESS DIELECTROPHORESIS; ELECTRIC-FIELDS; SEPARATION; MANIPULATION; DNA; DEVICES; ARRAYS; CELLS; GEOMETRY; CAPTURE;
D O I
10.1039/c6an02509a
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The ability to separate analytes with increasingly similar properties drives the field of separation science. One way to achieve such separations is using trapping and streaming dielectrophoresis (DEP), which directly exploits the subtle differences in the electrophysical properties of analytes. The non-uniform fields necessary for DEP can be formed using various insulator shapes in microchannels. Current insulator shapes include triangles, diamonds, circles, and rectangles. However, all of these insulators pose problems for trapping, streaming, and sorting (deflection) as the induced fields/gradients are not behaviorally consistent across the lateral dimension. This leads to analytes experiencing different forces depending on their pathline in the microchannel and result in low resolution separations. Based on an iterative process that explored approximately 40 different insulator shapes, a design was chosen that indicated improved particle streamlines, better trapping efficiency, and consistent electrical environments across the lateral dimension. The design was assessed by simulations where the electric field, gradient of the electric field squared, and the ratio of the two were plotted. The improved design includes a unique new multi-length scale element. The multi-length scale structure streamlines the analyte(s) and improves homogeneity in the lateral dimension, while still achieving high gradients necessary for analyte separation using DEP. The design is calculated to keep analytes on the centerline which should improve resolution, and eliminate extraneous trapping zones. Behaviors consistent with the features of the simulations were observed in proof of principle experiments using representative test probes.
引用
收藏
页码:1608 / 1618
页数:11
相关论文
共 72 条
[1]   High Throughput Protein Nanocrystal Fractionation in a Microfluidic Sorter [J].
Abdallah, Bahige G. ;
Roy-Chowdhury, Shatabdi ;
Coe, Jesse ;
Fromme, Petra ;
Ros, Alexandra .
ANALYTICAL CHEMISTRY, 2015, 87 (08) :4159-4167
[2]   Dielectrophoretic Sorting of Membrane Protein Nanocrystals [J].
Abdallah, Bahige G. ;
Chao, Tzu-Chiao ;
Kupitz, Christopher ;
Fromme, Petra ;
Ros, Alexandra .
ACS NANO, 2013, 7 (10) :9129-9137
[3]   Isomotive dielectrophoresis for parallel analysis of individual particles [J].
Allen, Daniel J. ;
Accolla, Robert P. ;
Williams, Stuart J. .
ELECTROPHORESIS, 2017, 38 (11) :1441-1449
[4]  
[Anonymous], 2005, AZ ELECT MAT AZ 3300
[5]   DC-dielectrophoretic separation of microparticles using an oil droplet obstacle [J].
Barbulovic-Nad, I ;
Xuan, XC ;
Lee, JSH ;
Li, DQ .
LAB ON A CHIP, 2006, 6 (02) :274-279
[6]   Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels [J].
Barrett, LM ;
Skulan, AJ ;
Singh, AK ;
Cummings, EB ;
Fiechtner, GJ .
ANALYTICAL CHEMISTRY, 2005, 77 (21) :6798-6804
[7]   Prediction of trapping zones in an insulator-based dielectrophoretic device [J].
Baylon-Cardiel, Javier L. ;
Lapizco-Encinas, Blanca H. ;
Reyes-Betanzo, Claudia ;
Chavez-Santoscoy, Ana V. ;
Martinez-Chapa, Sergio O. .
LAB ON A CHIP, 2009, 9 (20) :2896-2901
[8]  
Bhardwaj J., 1997, P S MICR MICR SYST E
[9]   Dielectrophoresis-Based Discrimination of Bacteria at the Strain Level Based on Their Surface Properties [J].
Braff, William A. ;
Willner, Dana ;
Hugenholtz, Philip ;
Rabaey, Korneel ;
Buie, Cullen R. .
PLOS ONE, 2013, 8 (10)
[10]   High sensitivity three-dimensional insulator-based dielectrophoresis [J].
Braff, William A. ;
Pignier, Alexandre ;
Buie, Cullen R. .
LAB ON A CHIP, 2012, 12 (07) :1327-1331