Observational constraints on Renyi holographic dark energy in Kantowski-Sachs universe

被引:25
作者
Prasanthi, U. Y. Divya [1 ]
Aditya, Y. [1 ]
机构
[1] GMR Inst Technol, Dept Math, Rajam 532127, India
关键词
Kantowski-Sachs model; Dark energy model; General relativity; Renyi holographic dark energy; Cosmology; SAEZ-BALLESTER THEORY; BRANS-DICKE THEORY; INFRARED CUTOFF; MODEL; TSALLIS; QUANTUM;
D O I
10.1016/j.dark.2021.100782
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we discuss the cosmic evolution of the anisotropic and spatially homogeneous Kantowski-Sachs universe with Renyi holographic dark energy in the background of general relativity. In order to find a solution of the field equations we have considered a relation between the metric potentials of the model. Cosmological aspects of the dynamical parameters corresponding to our dark energy model are calculated and their physical importance is studied with reference to the modern cosmological observations. We compute the dark energy equation of state parameter omega(de) and construct the omega(de) - omega(de)' plane (the ' shows the differentiation with respect to ln a). We include the stability analysis of the model by studying the sound speed and we observe that the model is stable at initial epoch and unstable at present and late times. In addition with the deceleration parameter, we also obtain Om-diagnostic and statefinder planes. It is clear from their analysis that our model comprises the quintessence, phantom dark energy regions and Lambda CDM limit. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 78 条
[1]   Planck 2013 results. XVI. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Armitage-Caplan, C. ;
Arnaud, M. ;
Ashdown, M. ;
Atrio-Barandela, F. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bobin, J. ;
Bock, J. J. ;
Bonaldi, A. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bridges, M. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cappellini, B. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chen, X. ;
Chiang, H. C. ;
Chiang, L. -Y ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. .
ASTRONOMY & ASTROPHYSICS, 2014, 571
[2]  
Adhav K.S., 2011, Int. J. Astron. Astrophys., V1, P204, DOI [DOI 10.4236/IJAA.2011.14026, 10.4236/ijaa.2011.14026]
[3]   Kantowski-Sachs Cosmological model with quark and strange quark matter in f(R) theory of gravity [J].
Adhav, Kishor S. ;
Bansod, Abhijit S. ;
Munde, Samadhan L. .
OPEN PHYSICS, 2015, 13 (01) :90-95
[4]   Observational constraint on interacting Tsallis holographic dark energy in logarithmic Brans-Dicke theory [J].
Aditya, Y. ;
Mandal, Sanjay ;
Sahoo, P. K. ;
Reddy, D. R. K. .
EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (12)
[5]   Anisotropic new holographic dark energy model in Saez-Ballester theory of gravitation [J].
Aditya, Y. ;
Reddy, D. R. K. .
ASTROPHYSICS AND SPACE SCIENCE, 2018, 363 (10)
[6]   FRWtype Kaluza-Klein modified holographic Ricci dark energy models in Brans-Dicke theory of gravitation [J].
Aditya, Y. ;
Reddy, D. R. K. .
EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (08)
[7]  
Aghanim N., 2018, ARXIV180706209V2
[8]   LRS Bianchi type I models with anisotropic dark energy and constant deceleration parameter [J].
Akarsu, Oezguer ;
Kilinc, Can Battal .
GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (01) :119-140
[9]   Current constraints on anisotropic and isotropic dark energy models [J].
Amirhashchi, Hassan ;
Amirhashchi, Soroush .
PHYSICAL REVIEW D, 2019, 99 (02)
[10]   Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration [J].
Armendariz-Picon, C ;
Mukhanov, V ;
Steinhardt, PJ .
PHYSICAL REVIEW LETTERS, 2000, 85 (21) :4438-4441