Local and global solutions for a hyperbolic-elliptic model of chemotaxis on a network

被引:3
作者
Guarguaglini, Francesca Romana [1 ]
Papi, Marco [2 ]
Smarrazzo, Flavia [2 ]
机构
[1] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67100 Laquila, Italy
[2] Univ Campus Biomed Roma, Via Alvaro Portillo 21, I-00128 Rome, Italy
关键词
Hyperbolic-elliptic systems; networks; transmission conditions; global existence of solutions; chemotaxis; BEHAVIOR; MIGRATION; STABILITY; SYSTEM;
D O I
10.1142/S021820251950026X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a hyperbolic-elliptic system on a network which arises in biological models involving chemotaxis. We also consider suitable transmission conditions at internal points of the graph which on one hand allow discontinuous density functions at nodes, and on the other guarantee the continuity of the fluxes at each node. Finally, we prove local and global existence of non-negative solutions - the latter in the case of small (in the L-1-norm) initial data - as well as their uniqueness.
引用
收藏
页码:1465 / 1509
页数:45
相关论文
共 34 条
  • [1] [Anonymous], 2014, SEMIGROUP METHODS EV
  • [2] Bellomo N., 2017, T AM MATH SOC, V4, P31, DOI DOI 10.1090/BTRAN/17
  • [3] A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up
    Bellomo, Nicola
    Winkler, Michael
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (03) : 436 - 473
  • [4] Boccardo L., 2013, DEGRUYTER STUDIES MA, V55
  • [5] THE SCALAR KELLER-SEGEL MODEL ON NETWORKS
    Borsche, R.
    Goettlich, S.
    Klar, A.
    Schillen, P.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (02) : 221 - 247
  • [6] Flows on networks: recent results and perspectives
    Bressan, Alberto
    Canic, Suncica
    Garavello, Mauro
    Herty, Michael
    Piccoli, Benedetto
    [J]. EMS SURVEYS IN MATHEMATICAL SCIENCES, 2014, 1 (01) : 47 - 111
  • [7] A HYPERBOLIC MODEL OF CHEMOTAXIS ON A NETWORK: A NUMERICAL STUDY
    Bretti, G.
    Natalini, R.
    Ribot, M.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (01): : 231 - 258
  • [8] Numerical approximation of nonhomogeneous boundary conditions on networks for a hyperbolic system of chemotaxis modeling the Physarum dynamics
    Bretti, Gabriella
    Natalini, Roberto
    [J]. JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2018, 18 (01) : 85 - 115
  • [9] Parabolic models for chemotaxis on weighted networks
    Camilli, Fabio
    Corrias, Lucilla
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (04): : 459 - 480
  • [10] Cazenave T., 1998, OXFORD LECT SERIES M, V13