Lyapunov-type bounds for U-statistics

被引:5
作者
Alberink, IB
Bentkus, V
机构
[1] Univ Nijmegen, Dept Math, NL-6500 GL Nijmegen, Netherlands
[2] Inst Math & Informat, LT-2600 Vilnius, Lithuania
关键词
U-statistics; Lyapunov-type bound; Berry-Esseen bound; rate of convergence; normal approximations;
D O I
10.1137/S0040585X97979299
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X-1,..., X-n be independent identically distributed random variables. An optimal Lyapunov (or Berry-Esseen) bound is derived for U-statistics of degree 2, that is, statistics of the form Sigma(j<k) H(X-j, X-k), where H is a measurable, symmetric function such that E\H(X-1, X-2)\ < infinity, assuming that the statistic is nondegenerate.
引用
收藏
页码:571 / 588
页数:18
相关论文
共 25 条
[1]   A Berry-Esseen bound for U-statistics in the non-IID case [J].
Alberink, IB .
JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (02) :519-533
[2]   Bounds for the concentration of asymptotically normal statistics [J].
Alberink, IB ;
Bentkus, V .
ACTA APPLICANDAE MATHEMATICAE, 1999, 58 (1-3) :11-59
[3]  
ALBERINK IB, IN PRESS LITH MATH J
[4]  
ALBERINK IB, 2000, THESIS
[5]  
[Anonymous], STATISTICAL DECISION
[6]  
[Anonymous], ANN PROBAB, DOI 10.1214/aop/1176988478
[7]  
Bentkus V, 1997, ANN STAT, V25, P851
[8]   On minimal moment assumptions in Berry-Esseen theorems for U-statistics [J].
Bentkus, V ;
Gotze, F .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1996, 40 (03) :430-445
[9]  
Bhattacharya R. N., 1986, Normal Approximation and Asymptotic Expansions
[10]   EDGEWORTH EXPANSIONS IN NONPARAMETRIC STATISTICS [J].
BICKEL, PJ .
ANNALS OF STATISTICS, 1974, 2 (01) :1-20