Startup mechanism and power distribution of free piston Stirling engine

被引:33
作者
Mou, Jian [1 ,2 ]
Hong, Guotong [1 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Space Energy Convers Technol, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
关键词
Free piston Stirling engine; Startup mechanism; Power distribution; THERMODYNAMIC ANALYSIS; OUTPUT POWER; OPTIMIZATION; MODEL; PERFORMANCE; OPERATION; DESIGN;
D O I
10.1016/j.energy.2017.02.030
中图分类号
O414.1 [热力学];
学科分类号
摘要
The startup mechanism and power distribution of free piston Stirling engine (FPSE) are different from the traditional crank connecting Stirling engine. All the time, there is no paper to study the startup mechanism and power distribution of FPSE. In this paper, three necessary conditions of startup of FPSE have been first proposed. Theoretical analysis and numerical simulation have been used to illustrate the alpha, beta and gamma types FPSEs whether meet the startup conditions. Related experiments have been done to prove the theoretical analysis and numerical simulation on an alpha and a beta type FPSEs. According to the theoretical analysis, numerical simulation and experiments, some important results have been obtained. If a FPSE works stably, during a complete cycle, not only the total work in compression and expansion space should be positive, but also the work done by gas to both piston and displacer should be positive. To the alpha type FPSE, over a complete cycle the work done by gas to piston is negative and the work done by gas to displacer is positive. It does not meet the startup conditions. Therefore, the alpha type FPSE is impossible to startup. To the beta and gamma type FPSEs, over a complete cycle the work done by gas to displacer is positive. However, over a complete cycle the work done by gas to piston could be positive or negative. So it maybe meet the startup conditions of FPSE or not. So the beta and gamma type FPSEs could start up or not. Whether the beta and gamma type FPSEs could start up depends on the engine design and parameters configuration. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:655 / 663
页数:9
相关论文
共 28 条
[1]   Thermodynamic model to study a solar collector for its application to Stirling engines [J].
Abdollahpour, Amir ;
Ahmadi, Mohammad H. ;
Mohammadi, Amir H. .
ENERGY CONVERSION AND MANAGEMENT, 2014, 79 :666-673
[2]   Thermal models for analysis of performance of Stirling engine: A review [J].
Ahmadi, Mohammad H. ;
Ahmadi, Mohammad-Ali ;
Pourfayaz, Fathollah .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 68 :168-184
[3]   Optimization of Output Power and Thermal Efficiency of Solar-Dish Stirling Engine Using Finite Time Thermodynamic Analysis [J].
Ahmadi, Mohammad H. ;
Sayyaadi, Hoseyn ;
Hosseinzadeh, Hadi .
HEAT TRANSFER-ASIAN RESEARCH, 2015, 44 (04) :347-376
[4]   Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas [J].
Ahmadi, Mohammad H. ;
Ahmadi, Mohammad-Ali ;
Pourfayaz, Fathollah .
EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (09)
[5]   Connectionist intelligent model estimates output power and torque of stirling engine [J].
Ahmadi, Mohammad H. ;
Ahmadi, Mohammad Ali ;
Sadatsakkak, Seyed Abbas ;
Feidt, Michel .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 50 :871-883
[6]   Influence of phase angle and dead volume on gamma-type Stirling engine power using CFD simulation [J].
Alfarawi, S. ;
Al-Dadah, R. ;
Mahmoud, S. .
ENERGY CONVERSION AND MANAGEMENT, 2016, 124 :130-140
[7]  
Beale W.T., 1969, Free piston stirling engines-some model tests and simulations
[8]   Optimization of a dual free piston Stirling engine [J].
Boucher, J. ;
Lanzetta, F. ;
Nika, P. .
APPLIED THERMAL ENGINEERING, 2007, 27 (04) :802-811
[9]   An experimental study on the performance of the moving regenerator for a γ-type twin power piston Stirling engine [J].
Chen, Wen-Lih ;
Wong, King-Leung ;
Chen, Hung-En .
ENERGY CONVERSION AND MANAGEMENT, 2014, 77 :118-128
[10]   Theoretical and experimental study of a 300-W beta-type Stirling engine [J].
Cheng, Chin-Hsiang ;
Yang, Hang-Suin ;
Keong, Lam .
ENERGY, 2013, 59 :590-599