ASYMMETRIC CRITICAL FRACTIONAL p-LAPLACIAN PROBLEMS

被引:0
|
作者
Huang, Li [1 ]
Yang, Yang [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
关键词
Fractional p-Laplacian; critical nonlinearity; asymmetric nonlinearity; linking; Z(2)-cohomological index; BIFURCATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the asymmetric critical fractional p-Laplacian problem (-Delta)(p)(s)u = lambda vertical bar u vertical bar(p-2)u + u(+)(s)(p)*-1 , in Omega; u = 0, in R-N \ Omega; where lambda > 0 is a constant, p(s)* = Np/(N - sp) is the fractional critical Sobolev exponent, and u(+) (x) = max{u(x), 0}. This extends a result in the literature for the local case s = 1. We prove the theorem based on the concentration compactness principle of the fractional p-Laplacian and a linking theorem based on the Z(2)-cohomological index.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian
    Pan, Ning
    Zhang, Binlin
    Cao, Jun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 56 - 70
  • [42] Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian
    Xiang Mingqi
    Bisci, Giovanni Molica
    Tian, Guohua
    Zhang, Binlin
    NONLINEARITY, 2016, 29 (02) : 357 - 374
  • [43] Periodic solutions for parabolic fractional p-Laplacian problems via topological degree
    Zineddaine, Ghizlane
    Melliani, Said
    Kassidi, Abderrazak
    FILOMAT, 2024, 38 (18) : 6539 - 6547
  • [44] Spectral Stability for the Peridynamic Fractional p-Laplacian
    Bellido, Jose C.
    Ortega, Alejandro
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S253 - S276
  • [45] Asymptotically linear fractional p-Laplacian equations
    Bartolo, Rossella
    Bisci, Giovanni Molica
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (02) : 427 - 442
  • [46] Hölder regularity for the fractional p-Laplacian
    Cassanello, Filippo Maria
    Duzgun, Fatma Gamze
    Iannizzotto, Antonio
    ADVANCES IN CALCULUS OF VARIATIONS, 2025,
  • [47] On a Fractional p-Laplacian Problem with Discontinuous Nonlinearities
    Achour, Hanaa
    Bensid, Sabri
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (06)
  • [48] The Nehari manifold for a ψ-Hilfer fractional p-Laplacian
    Sousa, J. Vanterler da C.
    Zuo, Jiabin
    O'Regan, Donal
    APPLICABLE ANALYSIS, 2022, 101 (14) : 5076 - 5106
  • [49] STABILITY OF VARIATIONAL EIGENVALUES FOR THE FRACTIONAL p-LAPLACIAN
    Brasco, Lorenzo
    Parini, Enea
    Squassina, Marco
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) : 1813 - 1845
  • [50] Global Holder regularity for the fractional p-Laplacian
    Iannizzotto, Antonio
    Mosconi, Sunra
    Squassina, Marco
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (04) : 1353 - 1392