Predicting 3D lip shapes using facial surface EMG

被引:12
作者
Eskes, Merijn [1 ,2 ]
van Alphen, Maarten J. A. [1 ]
Balm, Alfons J. M. [1 ,3 ]
Smeele, Ludi E. [1 ,3 ]
Brandsma, Dieta [4 ,5 ]
van der Heijden, Ferdinand [1 ,2 ]
机构
[1] Netherlands Canc Inst, Dept Head & Neck Oncol & Surg, Amsterdam, Netherlands
[2] Univ Twente, MIRA Inst Biomed Engn & Tech Med, Enschede, Netherlands
[3] Acad Med Ctr, Dept Oral & Maxillofacial Surg, Amsterdam, Netherlands
[4] Netherlands Canc Inst, Dept Neurooncol, Amsterdam, Netherlands
[5] Slotervaart Hosp, Dept Neurol, Amsterdam, Netherlands
来源
PLOS ONE | 2017年 / 12卷 / 04期
关键词
ELECTROMYOGRAPHY; RECOGNITION; SURGERY; CANCER; MODEL;
D O I
10.1371/journal.pone.0175025
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aim The aim of this study is to prove that facial surface electromyography (sEMG) conveys sufficient information to predict 3D lip shapes. High sEMG predictive accuracy implies we could train a neural control model for activation of biomechanical models by simultaneously recording sEMG signals and their associated motions. Materials and methods With a stereo camera set-up, we recorded 3D lip shapes and simultaneously performed sEMG measurements of the facial muscles, applying principal component analysis (PCA) and a modified general regression neural network (GRNN) to link the sEMG measurements to 3D lip shapes. To test reproducibility, we conducted our experiment on five volunteers, evaluating several sEMG features and window lengths in unipolar and bipolar configurations in search of the optimal settings for facial sEMG. Conclusions The errors of the two methods were comparable. We managed to predict 3D lip shapes with a mean accuracy of 2.76 mm when using the PCA method and 2.78 mm when using modified GRNN. Whereas performance improved with shorter window lengths, feature type and configuration had little influence.
引用
收藏
页数:16
相关论文
共 27 条
  • [21] Modeling coarticulation in EMG-based continuous speech recognition
    Schultz, Tanja
    Wand, Michael
    [J]. SPEECH COMMUNICATION, 2010, 52 (04) : 341 - 353
  • [22] A GENERAL REGRESSION NEURAL NETWORK
    SPECHT, DF
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (06): : 568 - 576
  • [23] Towards optimal multi-channel EMG electrode configurations in muscle force estimation:: a high density EMG study
    Staudenmann, D
    Kingma, I
    Stegeman, DF
    van Dieën, JH
    [J]. JOURNAL OF ELECTROMYOGRAPHY AND KINESIOLOGY, 2005, 15 (01) : 1 - 11
  • [24] Automatic prediction of tongue muscle activations using a finite element model
    Stavness, Ian
    Lloyd, John E.
    Fels, Sidney
    [J]. JOURNAL OF BIOMECHANICS, 2012, 45 (16) : 2841 - 2848
  • [25] Towards virtual surgery in oral cancer to predict postoperative oral functions preoperatively
    van Alphen, M. J. A.
    Kreeft, A. M.
    van der Heijden, F.
    Smeele, L. E.
    Balm, A. J. M.
    [J]. BRITISH JOURNAL OF ORAL & MAXILLOFACIAL SURGERY, 2013, 51 (08) : 747 - 751
  • [26] Van Der Heijden F., 2005, Classification, parameter estimation and state estimation: an engineering approach using MATLAB
  • [27] Wand M, 2014, IEEE ENG MED BIO, P4200, DOI 10.1109/EMBC.2014.6944550