Predicting 3D lip shapes using facial surface EMG

被引:12
作者
Eskes, Merijn [1 ,2 ]
van Alphen, Maarten J. A. [1 ]
Balm, Alfons J. M. [1 ,3 ]
Smeele, Ludi E. [1 ,3 ]
Brandsma, Dieta [4 ,5 ]
van der Heijden, Ferdinand [1 ,2 ]
机构
[1] Netherlands Canc Inst, Dept Head & Neck Oncol & Surg, Amsterdam, Netherlands
[2] Univ Twente, MIRA Inst Biomed Engn & Tech Med, Enschede, Netherlands
[3] Acad Med Ctr, Dept Oral & Maxillofacial Surg, Amsterdam, Netherlands
[4] Netherlands Canc Inst, Dept Neurooncol, Amsterdam, Netherlands
[5] Slotervaart Hosp, Dept Neurol, Amsterdam, Netherlands
来源
PLOS ONE | 2017年 / 12卷 / 04期
关键词
ELECTROMYOGRAPHY; RECOGNITION; SURGERY; CANCER; MODEL;
D O I
10.1371/journal.pone.0175025
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aim The aim of this study is to prove that facial surface electromyography (sEMG) conveys sufficient information to predict 3D lip shapes. High sEMG predictive accuracy implies we could train a neural control model for activation of biomechanical models by simultaneously recording sEMG signals and their associated motions. Materials and methods With a stereo camera set-up, we recorded 3D lip shapes and simultaneously performed sEMG measurements of the facial muscles, applying principal component analysis (PCA) and a modified general regression neural network (GRNN) to link the sEMG measurements to 3D lip shapes. To test reproducibility, we conducted our experiment on five volunteers, evaluating several sEMG features and window lengths in unipolar and bipolar configurations in search of the optimal settings for facial sEMG. Conclusions The errors of the two methods were comparable. We managed to predict 3D lip shapes with a mean accuracy of 2.76 mm when using the PCA method and 2.78 mm when using modified GRNN. Whereas performance improved with shorter window lengths, feature type and configuration had little influence.
引用
收藏
页数:16
相关论文
共 27 条
  • [1] Arjunan SP, 2008, LECT NOTES BUS INF P, V12, P366
  • [2] Beskow J., 2003, TALKING HEADS MODELS
  • [3] Small-vocabulary speech recognition using surface electromyography
    Betts, Bradley J.
    Binsted, Kim
    Jorgensen, Charles
    [J]. INTERACTING WITH COMPUTERS, 2006, 18 (06) : 1242 - 1259
  • [4] Brain-computer interfaces for speech communication
    Brumberg, Jonathan S.
    Nieto-Castanon, Alfonso
    Kennedy, Philip R.
    Guenther, Frank H.
    [J]. SPEECH COMMUNICATION, 2010, 52 (04) : 367 - 379
  • [5] Silent speech interfaces
    Denby, B.
    Schultz, T.
    Honda, K.
    Hueber, T.
    Gilbert, J. M.
    Brumberg, J. S.
    [J]. SPEECH COMMUNICATION, 2010, 52 (04) : 270 - 287
  • [6] Concurrent chemoradiotherapy compared with surgery and adjuvant radiotherapy for oral cavity squamous cell carcinoma
    Gore, Sinclair M.
    Crombie, Anthony K.
    Batstone, Martin D.
    Clark, Jonathan R.
    [J]. HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2015, 37 (04): : 518 - 523
  • [7] Hamedi Mahyar, 2011, Journal of Computer Sciences, V7, P1407, DOI 10.3844/jcssp.2011.1407.1415
  • [8] Human facial neural activities and gesture recognition for machine-interfacing applications
    Hamedi, M.
    Salleh, Sh-Hussain
    Tan, T. S.
    Ismail, K.
    Ali, J.
    Dee-Uam, C.
    Pavaganun, C.
    Yupapin, P. P.
    [J]. INTERNATIONAL JOURNAL OF NANOMEDICINE, 2011, 6 : 3461 - 3472
  • [9] PHYSIOLOGY OF THE LIPS AND MODELING OF LIP GESTURES
    HONDA, K
    KURITA, T
    KAKITA, Y
    MAEDA, S
    [J]. JOURNAL OF PHONETICS, 1995, 23 (1-2) : 243 - 254
  • [10] Jou SC, 2006, INT CONF ACOUST SPEE, P605