BSDP: Big Sensor Data Preprocessing in Multi-Source Fusion Positioning System Using Compressive Sensing

被引:28
作者
Zhao, Wanlong [1 ]
Han, Shuai [1 ]
Meng, Weixiao [1 ]
Sun, Dajun [2 ]
Hu, Rose Qingyang [3 ]
机构
[1] Harbin Inst Technol, Commun Res Ctr, Harbin 150080, Heilongjiang, Peoples R China
[2] Harbin Engn Univ, Coll Underwater Acoust Engn, Harbin 150001, Heilongjiang, Peoples R China
[3] Utah State Univ, Dept Elect & Comp Engn, Logan, UT 84322 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Big sensor data; data preprocessing; multi-source fusion positioning; compressive sensing; RECONSTRUCTION; ANALYTICS;
D O I
10.1109/TVT.2019.2929560
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multi-source fusion positioning system (MFPS) adopts a data fusion technique for hybrid positioning. This technique fully utilizes several types of positioning sources in contrast to the conventional positioning methods, which use a single positioning source. Sensor data collection and processing are essential components in MFPSs. A framework for a practical center-server-based MFPS is proposed in this paper. A big sensor data preprocessing (BSDP) scheme, which is composed of data extraction (DE-BSDP), data gathering (DG-BSDP), and data transmission (DT-BSDP), is further proposed under this framework. DE-BSDP attempts to remove useless positioning data from fusion sources. The big sensor data are further compressed in DG-BSDP, in which a compressive sensing technique is adopted to realize data compression before data transmission. After the data gathering phase, the compressed data are transmitted to the fusion center for reconstruction in DT-BSDP. The proposed BSDP method can reduce the data collection amount significantly and improves the data transmission efficiency with a slight reduction on positioning accuracy. Experiments and simulations verify the effectiveness of the proposed BSDP scheme.
引用
收藏
页码:8866 / 8880
页数:15
相关论文
共 48 条
  • [11] Compressed sensing
    Donoho, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1289 - 1306
  • [12] A Map-Assisted WiFi AP Placement Algorithm Enabling Mobile Device's Indoor Positioning
    Du, Xuan
    Yang, Kun
    [J]. IEEE SYSTEMS JOURNAL, 2017, 11 (03): : 1467 - 1475
  • [13] Improve the Security of GNSS Receivers Through Spoofing Mitigation
    Han, Shuai
    Chen, Lei
    Meng, Weixiao
    Li, Cheng
    [J]. IEEE ACCESS, 2017, 5 : 21057 - 21069
  • [14] Automatic Precision Control Positioning for Wireless Sensor Network
    Han, Shuai
    Gong, Zijun
    Meng, Weixiao
    Li, Cheng
    Zhang, Dekun
    Tang, Wenyan
    [J]. IEEE SENSORS JOURNAL, 2016, 16 (07) : 2140 - 2150
  • [15] Compressed sensing for networked data
    Haupt, Jarvis
    Bajwa, Waheed U.
    Rabbat, Michael
    Nowak, Robert
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) : 92 - 101
  • [16] Weight Self-Adjustment Adams Implicit Filtering Algorithm for Attitude Estimation Applied to Underwater Gliders
    Huang, Haoqian
    Chen, Xiyuan
    Zhang, Jiajin
    [J]. IEEE ACCESS, 2016, 4 : 5695 - 5709
  • [17] Real-Time Estimation of Center of Gravity Position for Lightweight Vehicles Using Combined AKF-EKF Method
    Huang, Xiaoyu
    Wang, Junmin
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2014, 63 (09) : 4221 - 4231
  • [18] Kato N., IEEE Wireless Commun
  • [19] Compressed Sensing Signal and Data Acquisition in Wireless Sensor Networks and Internet of Things
    Li, Shancang
    Xu, Li Da
    Wang, Xinheng
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (04) : 2177 - 2186
  • [20] Distributed Data Aggregation for Sparse Recovery in Wireless Sensor Networks
    Li, Shuangjiang
    Qi, Hairong
    [J]. 2013 9TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (IEEE DCOSS 2013), 2013, : 62 - 69