BSDP: Big Sensor Data Preprocessing in Multi-Source Fusion Positioning System Using Compressive Sensing

被引:28
作者
Zhao, Wanlong [1 ]
Han, Shuai [1 ]
Meng, Weixiao [1 ]
Sun, Dajun [2 ]
Hu, Rose Qingyang [3 ]
机构
[1] Harbin Inst Technol, Commun Res Ctr, Harbin 150080, Heilongjiang, Peoples R China
[2] Harbin Engn Univ, Coll Underwater Acoust Engn, Harbin 150001, Heilongjiang, Peoples R China
[3] Utah State Univ, Dept Elect & Comp Engn, Logan, UT 84322 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Big sensor data; data preprocessing; multi-source fusion positioning; compressive sensing; RECONSTRUCTION; ANALYTICS;
D O I
10.1109/TVT.2019.2929560
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multi-source fusion positioning system (MFPS) adopts a data fusion technique for hybrid positioning. This technique fully utilizes several types of positioning sources in contrast to the conventional positioning methods, which use a single positioning source. Sensor data collection and processing are essential components in MFPSs. A framework for a practical center-server-based MFPS is proposed in this paper. A big sensor data preprocessing (BSDP) scheme, which is composed of data extraction (DE-BSDP), data gathering (DG-BSDP), and data transmission (DT-BSDP), is further proposed under this framework. DE-BSDP attempts to remove useless positioning data from fusion sources. The big sensor data are further compressed in DG-BSDP, in which a compressive sensing technique is adopted to realize data compression before data transmission. After the data gathering phase, the compressed data are transmitted to the fusion center for reconstruction in DT-BSDP. The proposed BSDP method can reduce the data collection amount significantly and improves the data transmission efficiency with a slight reduction on positioning accuracy. Experiments and simulations verify the effectiveness of the proposed BSDP scheme.
引用
收藏
页码:8866 / 8880
页数:15
相关论文
共 48 条
  • [1] Big Sensor Data Systems for Smart Cities
    Ang, Li-Minn
    Seng, Kah Phooi
    Zungeru, Adamu Murtala
    Ijemaru, Gerald K.
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2017, 4 (05): : 1259 - 1271
  • [2] Big Sensor Data Applications in Urban Environments
    Ang, Li-Minn
    Seng, Kah Phooi
    [J]. BIG DATA RESEARCH, 2016, 4 : 1 - 12
  • [3] Image Reconstruction Using Matched Wavelet Estimated From Data Sensed Compressively Using Partial Canonical Identity Matrix
    Ansari, Naushad
    Gupta, Anubha
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (08) : 3680 - 3695
  • [4] A Low-Cost Lane-Determination System Using GNSS/IMU Fusion and HMM-Based Multistage Map Matching
    Atia, Mohamed Maher
    Hilal, Allaa R.
    Stellings, Clive
    Hartwell, Eric
    Toonstra, Jason
    Miners, William B.
    Basir, Otman A.
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2017, 18 (11) : 3027 - 3037
  • [5] IEEE-SPS and connexions - An open access education collaboration
    Baraniuk, Richard G.
    Burrus, C. Sidney
    Thierstein, E. Joel
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (06) : 6 - +
  • [6] Bhujle H., 2016, P 2016 INT C SIGN PR, P1
  • [7] Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information
    Candès, EJ
    Romberg, J
    Tao, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) : 489 - 509
  • [8] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
  • [9] A Real-Time Map Refinement Method Using a Multi-Sensor Localization Framework
    Delobel, Laurent
    Aufrere, Romuald
    Debain, Christophe
    Chapuis, Roland
    Chateau, Thierry
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (05) : 1644 - 1658
  • [10] A Real-Time Big Data Gathering Algorithm Based on Indoor Wireless Sensor Networks for Risk Analysis of Industrial Operations
    Ding, Xuejun
    Tian, Yong
    Yu, Yan
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (03) : 1232 - 1242