Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation

被引:154
|
作者
Zhao, Dong [1 ]
Liu, Lei [1 ]
Yu, Fanhua [1 ]
Heidari, Ali Asghar [2 ,3 ]
Wang, Mingjing [4 ]
Oliva, Diego [5 ,6 ]
Muhammad, Khan [7 ]
Chen, Huiling [8 ]
机构
[1] Changchun Normal Univ, Coll Comp Sci & Technol, Changchun 130032, Jilin, Peoples R China
[2] Univ Tehran, Coll Engn, Sch Surveying & Geospatial Engn, Tehran, Iran
[3] Natl Univ Singapore, Sch Comp, Dept Comp Sci, Singapore, Singapore
[4] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[5] Univ Oberta Catalunya, IN3 Comp Sci Dept, Castelldefels 08860, Spain
[6] Univ Guadalajara, Dept Ciencias Computacionales, CUCEI, Av Revolucion 1500, Guadalajara 44430, Jalisco, Mexico
[7] Sungkyunkwan Univ, Sch Convergence, Coll Comp & Informat, Visual Analyt Knowledge Lab VIS2KNOW Lab, Seoul 03063, South Korea
[8] Wenzhou Univ, Coll Comp Sci & Artificial Intelligence, Wenzhou 325035, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Ant colony optimization; Continuous optimization; Multi-threshold image segmentation; Kapur’ s entropy; 2D histogram; PARTICLE SWARM OPTIMIZATION; SINE-COSINE ALGORITHM; NEURAL-NETWORK; DIFFERENTIAL EVOLUTION; GLOBAL OPTIMIZATION; TSALLIS ENTROPY; SELECTION; STRATEGY; INTELLIGENCE; SYSTEMS;
D O I
10.1016/j.eswa.2020.114122
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ant colony optimization (ACO) is the most exceptionally fundamental swarm-based solver for realizing discrete problems. In order to make it also suitable for solving continuous problems, a variant of ACO (ACOR) has been proposed already. The deep-rooted ACO always stands out in the eyes of well-educated researchers as one of the best-designed metaheuristic ways for realizing the solutions to real-world problems. However, ACOR has some stochastic components that need to be further improved in terms of solution quality and convergence speed. Therefore, to effectively improve these aspects, this in-depth research introduced horizontal crossover search (HCS) and vertical crossover search (VCS) into the ACOR and improved the selection mechanism of the original ACOR to form an improved algorithm (CCACO) for the first time. In CCACO, the HCS is mainly intended to increase the convergence rate. Meanwhile, the VCS and the developed selection mechanism are mainly aimed at effectively improving the ability to avoid dwindling into local optimal (LO) and the convergence accuracy. To reach next-level strong results for image segmentation and better illustrate its effectiveness, we conducted a series of comparative experiments with 30 benchmark functions from IEEE CEC 2014. In the experiment, we compared the developed CCACO with well-known conventional algorithms and advanced ones. All experimental results also show that its convergence speed and solution quality are superior to other algorithms, and its ability to avoid dropping into local optimum (LO) is more reliable than that of its peers. Furthermore, to further illustrate its enhanced performance, we applied it to image segmentation based on multi-threshold image segmentation (MTIS) method with a non-local means 2D histogram and Kapur's entropy. In the experiment, it was compared with existing competitive algorithms at low and high threshold levels. The experimental results show that the proposed CCACO achieves excellent segmentation results at both low and high threshold levels. For any help and guidance regarding this research, readers, and industry activists can refer to the background info at http://aliasgharheidari.com/.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] Medical Image Segmentation Based on Maximum Entropy Multi-threshold Segmentation Optimized by Improved Cuckoo Search Algorithm
    Li, Aiju
    Li, Yujie
    Wang, Tingmei
    Niu, Wenliang
    2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2015, : 470 - 475
  • [32] Multi-Threshold Image Segmentation Based on the Improved Dragonfly Algorithm
    Dong, Yuxue
    Li, Mengxia
    Zhou, Mengxiang
    MATHEMATICS, 2024, 12 (06)
  • [33] Automatic Multi-threshold Image Segmentation Using Metaheuristic Algorithms
    Bejinariu, Silviu-Ioan
    Costin, Hariton
    Rotaru, Florin
    Luca, Ramona
    Nita, Cristina Diana
    2015 INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS (ISSCS), 2015,
  • [34] Microorganism Image Counting Based on Multi-threshold Optimization
    Zhou Fang
    Cao Wenjun
    Wu Zhi
    Wei Xin
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [35] A comparison of nature inspired algorithms for multi-threshold image segmentation
    Osuna-Enciso, Valentin
    Cuevas, Erik
    Sossa, Humberto
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (04) : 1213 - 1219
  • [36] A Multi-threshold Image Segmentation Method With Adaptive Fuzzy Entropy
    Fu, Xiaowei
    Ding, Mingyue
    2009 SECOND INTERNATIONAL CONFERENCE ON FUTURE INFORMATION TECHNOLOGY AND MANAGEMENT ENGINEERING, FITME 2009, 2009, : 171 - 174
  • [37] An improved ant colony optimization approach for image segmentation
    Lu, J
    Hu, RQ
    ISTM/2005: 6TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-9, CONFERENCE PROCEEDINGS, 2005, : 6071 - 6074
  • [38] An ant colony optimization approach for sar image segmentation
    Cao, Lan-Ying
    Xia, Liang-Zheng
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 296 - +
  • [39] Harris hawks optimization for COVID-19 diagnosis based on multi-threshold image segmentation
    Ryalat, Mohammad Hashem
    Dorgham, Osama
    Tedmori, Sara
    Al-Rahamneh, Zainab
    Al-Najdawi, Nijad
    Mirjalili, Seyedali
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (09): : 6855 - 6873
  • [40] Multi-threshold image segmentation method of QFN chip based on improved grey wolf optimization
    Chao Y.
    Xu W.
    Liu W.
    Cao Z.
    Zhang M.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (06): : 930 - 944