Novel kinetically consistent algorithm for magneto gas dynamics

被引:12
作者
Chetverushkin, Boris N. [1 ]
D'Ascenzo, Nicola [1 ,2 ]
Saveliev, Andrei V. [4 ]
Saveliev, Valeri I. [3 ]
机构
[1] Russian Acad Sci, Keldysh Inst Appl Math, Moscow, Russia
[2] DESY, Hamburg, Germany
[3] Emmanuel Kant Balt Fed Univ, Kaliningrad, Russia
[4] Univ Hamburg, Hamburg, Germany
基金
俄罗斯科学基金会;
关键词
Magnetohydrodynamics (MHD); Kinetic schemes; Kinetically consistent schemes; High performance computing; MAGNETOHYDRODYNAMICS; SIMULATIONS; SCHEME; MHD;
D O I
10.1016/j.aml.2017.04.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new kinetically consistent method for the modelling of magneto gas dynamic processes. The algorithm is consistent with viscous, thermally conducting, resistive flows. Through a computational test we show that it is robust in resolving the physical behaviour of shock structures and instabilities. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 19 条
[1]  
Alfven H., 1950, COSMICAL ELECTRODYNA
[2]   A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations [J].
Balsara, DS ;
Spicer, DS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (02) :270-292
[3]   Total variation diminishing scheme for adiabatic and isothermal magnetohydrodynamics [J].
Balsara, DS .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1998, 116 (01) :133-153
[4]  
Boltzmann L., 1995, Lectures on Gas Theory
[5]  
Chapman S., 1990, Thermal Conduction and Diffusion in Gases
[6]  
Chetverushkin B. N., 2015, MATH MODELS COMPUT S, V7, P521
[7]  
Chetverushkin B. N., 2008, KINETIC SCHEMES QUAS
[8]  
Croisille J.-P., 1995, Journal of Scientific Computing, V10, P81, DOI 10.1007/BF02087961
[9]   On an algorithm for solving parabolic and elliptic equations [J].
D'Ascenzo, N. ;
Saveliev, V. I. ;
Chetverushkin, B. N. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2015, 55 (08) :1290-1297
[10]  
Dellar PJ, 2002, J COMPUT PHYS, V179, P95, DOI 10.1006/jcph