Effect of Gas Dynamics on Discharge Modes and Plasma Chemistry in Rotating Gliding Arc Reactor

被引:7
作者
Ananthanarasimhan, J. [1 ]
Shivapuji, Anand M. [1 ]
Leelesh, P. [1 ]
Rao, Lakshminarayana [1 ]
机构
[1] Indian Inst Sci, Ctr Sustainable Technol, Bengaluru 560012, India
关键词
Discharges (electric); Electrodes; Inductors; Transient analysis; Plasma chemistry; Stimulated emission; Cold flow simulation (CFS); discharge modes; gas dynamics; optical emission spectroscopy (OES); rotating gliding arc (RGA); AIR;
D O I
10.1109/TPS.2020.2994580
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This article investigates the effect of gas flow rate on arc discharge mode and plasma chemistry in a nonmagnetic rotating gliding arc reactor. This article is conducted using oxygen as a plasma forming gas under transient (5 LPM), turbulent (25 LPM), and highly turbulent (50 LPM) flow conditions. The voltage-current ( $V - I $ ) characteristics reveal discharge modes, such as glow mode under transient flow $\left ({I < 1~\text {A} }\right) $ , glow-spark transition mode under turbulent flow $\left ({I < 1 ~\text {A}~\&~I \gg 1 ~\text {A} }\right) $ , and spark mode under highly turbulent flow $\left ({I \gg 1 ~\text {A} }\right) $ . Arc completes full rotation under transient flow, whereas it is blown off before completing full rotation under turbulent flows. The captured optical emission lines of the discharge indicate domination of excitation reactions under glow and glow-spark transition modes and domination of both the excitation and electron impact ionization reactions under spark mode. These observations reveal that the gas dynamics changes the discharge mode of the rotating arc that in turn alters the plasma chemistry, which is a positive feature to promote specific reaction pathways.
引用
收藏
页码:502 / 506
页数:5
相关论文
共 32 条
[1]   The 2017 Plasma Roadmap: Low temperature plasma science and technology [J].
Adamovich, I. ;
Baalrud, S. D. ;
Bogaerts, A. ;
Bruggeman, P. J. ;
Cappelli, M. ;
Colombo, V. ;
Czarnetzki, U. ;
Ebert, U. ;
Eden, J. G. ;
Favia, P. ;
Graves, D. B. ;
Hamaguchi, S. ;
Hieftje, G. ;
Hori, M. ;
Kaganovich, I. D. ;
Kortshagen, U. ;
Kushner, M. J. ;
Mason, N. J. ;
Mazouffre, S. ;
Thagard, S. Mededovic ;
Metelmann, H-R ;
Mizuno, A. ;
Moreau, E. ;
Murphy, A. B. ;
Niemira, B. A. ;
Oehrlein, G. S. ;
Petrovic, Z. Lj ;
Pitchford, L. C. ;
Pu, Y-K ;
Rauf, S. ;
Sakai, O. ;
Samukawa, S. ;
Starikovskaia, S. ;
Tennyson, J. ;
Terashima, K. ;
Turner, M. M. ;
van de Sanden, M. C. M. ;
Vardelle, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (32)
[2]   Influence of gas dynamics on arc dynamics and the discharge power of a rotating gliding arc [J].
Ananthanarasimhan, J. ;
Lakshminarayana, R. ;
Anand, M. S. ;
Dasappa, S. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2019, 28 (08)
[3]   Modelling of low-current discharges in atmospheric-pressure air taking account of non-equilibrium effects [J].
Benilov, MS ;
Naidis, GV .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (15) :1834-1841
[4]   Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition [J].
Bo, Zheng ;
Yan, Jianhua ;
Li, Xiaodong ;
Chi, Yong ;
Cen, Kefa .
JOURNAL OF HAZARDOUS MATERIALS, 2008, 155 (03) :494-501
[5]   Plasma Technology: An Emerging Technology for Energy Storage [J].
Bogaerts, Annemie ;
Neyts, Erik C. .
ACS ENERGY LETTERS, 2018, 3 (04) :1013-1027
[6]   Plasma generation and plasma sources [J].
Conrads, H ;
Schmidt, M .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2000, 9 (04) :441-454
[7]  
Fridman A, 2008, PLASMA CHEMISTRY, P1, DOI 10.1017/CBO9780511546075
[8]  
Ganesh Subramanian PS., 2019, ADV MAT LETT, V10, P919, DOI [10.5185/amlett.2019.0041, DOI 10.5185/AMLETT.2019.0041]
[9]   Visualization of instantaneous structure and dynamics of large-scale turbulent flames stabilized by a gliding arc discharge [J].
Gao, Jinlong ;
Kong, Chengdong ;
Zhu, Jiajian ;
Ehn, Andreas ;
Hurtig, Tomas ;
Tang, Yong ;
Chen, Shuang ;
Alden, Marcus ;
Li, Zhongshan .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (04) :5629-5636
[10]  
Gharagozalian M, 2017, J THEOR APPL PHYS, V11, P171, DOI 10.1007/s40094-017-0254-z