Discrete-element numerical modelling method for studying mechanical response of methane-hydrate-bearing specimens

被引:26
作者
Jiang, Yujing [1 ,2 ,3 ]
Gong, Bin [1 ,2 ,3 ]
机构
[1] Nagasaki Univ, Grad Sch Engn, Nagasaki, Japan
[2] Shandong Univ Sci & Technol, Coll Min & Safety Engn, Qingdao, Shandong, Peoples R China
[3] Shandong Univ Sci & Technol, Key Lab Min Disaster Prevent & Control, Shandong Prov & Minist Sci & Technol, Qingdao, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Confining pressure; discrete-element method (DEM); loading velocity; mechanical response mechanism; methane hydrate-bearing specimen (MHS); saturation; GAS HYDRATE; BEHAVIOR; SEDIMENTS; STRENGTH; DEFORMATION; DISSOCIATION; FISSURES; CARBON; SAND;
D O I
10.1080/1064119X.2019.1652373
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
It is important to understand the deformation mechanism of methane-hydrate specimens (MHSs) to avoid deforming the seabed during methane-hydrate production. For this purpose, discrete-element method (DEM) modelling is advantageous because it requires much less cost and effort compared to artificial specimens and in situ sediments. In this study, a method for generating DEM numerical simulation models of MHSs is proposed to study the deformation mechanism of MHSs. First, numerical models that consider the saturation of methane hydrate (S-MH), following which the bi-axial compression of these models is simulated. The mechanisms controlling the shear strength of MHSs are verified and modified by investigating the stress-strain response behavior, crack-development process, and evolution of the void change rate (E-change) of MHSs. The increases of the peak strength and secant elastic modulus of the MHS with the increment of confining pressure follow parabolic relationships. Under different loading rates, the peak strength tends to increase parabolically with the increment of loading rate, while the relationship between the secant elastic modulus and loading rate is linear. Based on the testing results, empirical formulas of peak stress and elastic modulus are proposed for different confining-pressure and strain-rate conditions.
引用
收藏
页码:1082 / 1096
页数:15
相关论文
共 50 条
[1]  
[Anonymous], 2011, 7 INT C GAS HYDR ICG
[2]  
[Anonymous], 2005, 15 INT OFFSH POL ENG
[3]  
[Anonymous], 2006, Characterisation and Engineering Properties of Natural Soils
[4]  
Aoki K., 2004, J MINING MAT PROCESS, V120, P645, DOI [10.2473/shigentosozai.120.645, DOI 10.2473/SHIGENTOSOZAI.120.645]
[5]   Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution [J].
Brugada, J. ;
Cheng, Y. P. ;
Soga, K. ;
Santamarina, J. C. .
GRANULAR MATTER, 2010, 12 (05) :517-525
[6]   Mechanical Behavior of Brittle Rock-Like Specimens with Pre-existing Fissures Under Uniaxial Loading: Experimental Studies and Particle Mechanics Approach [J].
Cao, Ri-hong ;
Cao, Ping ;
Lin, Hang ;
Pu, Cheng-zhi ;
Ou, Ke .
ROCK MECHANICS AND ROCK ENGINEERING, 2016, 49 (03) :763-783
[7]   The effects of disseminated methane hydrate on the dynamic stiffness and damping of a sand [J].
Clayton, CRI ;
Priest, JA ;
Best, AI .
GEOTECHNIQUE, 2005, 55 (06) :423-434
[8]  
Collett TS, 1998, OIL GAS J, V96, P90
[9]   DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES [J].
CUNDALL, PA ;
STRACK, ODL .
GEOTECHNIQUE, 1979, 29 (01) :47-65
[10]  
De Alba P., 1975, EERC 75-14)