Superfluid density and quasi-long-range order in the one-dimensional disordered Bose-Hubbard model

被引:29
作者
Gerster, M. [1 ]
Rizzi, M. [2 ]
Tschirsich, F. [1 ]
Silvi, P. [1 ]
Fazio, R. [3 ,4 ,5 ]
Montangero, S. [1 ,6 ,7 ,8 ]
机构
[1] Univ Ulm, Inst Complex Quantum Syst, D-89069 Ulm, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys, Staudingerweg 7, D-55099 Mainz, Germany
[3] Abdus Salaam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[4] Scuola Normale Super Pisa, NEST, Piazza Cavalieri 7, I-56126 Pisa, Italy
[5] Ist Nanosci CNR, I-56126 Pisa, Italy
[6] Univ Ulm, Ctr Integrated Quantum Sci & Technol IQST, D-89069 Ulm, Germany
[7] Univ Stuttgart, Stuttgart, Germany
[8] MPI Solid State Res, Berlin, Germany
来源
NEW JOURNAL OF PHYSICS | 2016年 / 18卷
关键词
Bose glass; disorder-driven phase transition; numerical simulation of quantum many-body systems; QUANTUM PHASE-TRANSITIONS; GLASS TRANSITION; LOCALIZATION; INSULATOR; SYSTEMS; BOSONS;
D O I
10.1088/1367-2630/18/1/015015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the equilibrium properties of the one-dimensional disordered Bose-Hubbard model by means of a gauge-adaptive tree tensor network variational method suitable for systems with periodic boundary conditions. We compute the superfluid stiffness and superfluid correlations close to the superfluid to glass transition line, obtaining accurate locations of the critical points. By studying the statistics of the exponent of the power-law decay of the correlation, we determine the boundary between the superfluid region and the Bose glass phase in the regime of strong disorder and in the weakly interacting region, not explored numerically before. In the former case our simulations are in agreement with previous Monte Carlo calculations.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Properties of the superfluid in the disordered Bose-Hubbard model
    de Abreu, Bruno R.
    Ray, Ushnish
    Vitiello, Silvio A.
    Ceperley, David M.
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [2] Superfluidity in the one-dimensional Bose-Hubbard model
    Kiely, Thomas G.
    Mueller, Erich J.
    PHYSICAL REVIEW B, 2022, 105 (13)
  • [3] Using entanglement to discern phases in the disordered one-dimensional Bose-Hubbard model
    Goldsborough, Andrew M.
    Roemer, Rudolf A.
    EPL, 2015, 111 (02)
  • [4] Characterization of Mott-insulating and superfluid phases in the one-dimensional Bose-Hubbard model
    Ejima, Satoshi
    Fehske, Holger
    Gebhard, Florian
    Muenster, Kevin Zu
    Knap, Michael
    Arrigoni, Enrico
    von der Linden, Wolfgang
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [5] Reentrance and entanglement in the one-dimensional Bose-Hubbard model
    Pino, M.
    Prior, J.
    Somoza, A. M.
    Jaksch, D.
    Clark, S. R.
    PHYSICAL REVIEW A, 2012, 86 (02):
  • [6] Multiband effects and the Bose-Hubbard model in one-dimensional lattices
    Xu, Wei
    Olshanii, Maxim
    Rigol, Marcos
    PHYSICAL REVIEW A, 2016, 94 (03)
  • [7] Superfluid-insulator transition in the disordered two-dimensional Bose-Hubbard model
    Lin, Fei
    Sorensen, Erik S.
    Ceperley, D. M.
    PHYSICAL REVIEW B, 2011, 84 (09):
  • [8] Dynamic properties of the one-dimensional Bose-Hubbard model
    Ejima, S.
    Fehske, H.
    Gebhard, F.
    EPL, 2011, 93 (03)
  • [9] Nonergodic dynamics of the one-dimensional Bose-Hubbard model with a trapping potential
    Kunimi, Masaya
    Danshita, Ippei
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [10] Superfluid clusters, percolation and phase transitions in the disordered, two-dimensional Bose-Hubbard model
    Niederle, A. E.
    Rieger, H.
    NEW JOURNAL OF PHYSICS, 2013, 15