Constructing a Multifunctional Interface between Membrane and Porous Transport Layer for Water Electrolyzers

被引:70
|
作者
Liu, Chang [1 ,2 ]
Wippermann, Klaus [1 ]
Rasinski, Marcin [3 ]
Suo, Yanpeng [1 ,4 ]
Shviro, Meital [1 ]
Carmo, Marcelo [1 ,5 ]
Lehnert, Werner [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res, IEK 14 Electrochem Proc Engn, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Fac Mech Engn, D-52062 Aachen, Germany
[3] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys IEK 4, D-52425 Julich, Germany
[4] Rhein Westfal TH Aachen, D-52062 Aachen, Germany
[5] Queens Univ, Mech & Mat Engn, Kingston, ON K7L 3N6, Canada
关键词
PEM water electrolyzers; porous transport layer; porous transport electrode; iridium; sputtering; LIQUID/GAS DIFFUSION LAYERS; POLYMER ELECTROLYTE; ELECTROCHEMICAL CHARACTERIZATION; PEM ELECTROLYZERS; IRIDIUM OXIDE; PERFORMANCE; HYDROGEN; EFFICIENCY; PLATINUM; CELL;
D O I
10.1021/acsami.0c20690
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The cell performance and durability of polymer electrolyte membrane (PEM) water electrolyzers are limited by the surface passivation of titanium-based porous transport layers (PTLs). In order to ensure stable performance profiles over time, large amounts (>= 1 mg.cm(-2)) of noble metals (Au, Pt, Ir) are most widely used to coat titanium-based PTLs. However, their high cost is still a major obstacle toward commercialization and widespread application. In this paper, we assess different loadings of iridium, ranging from 0.005 to 0.05 mg.cm(-2) in titanium PTLs, that consequently affect the investment costs of PEM water electrolyzers. Concerning a reduction in the precious metal costs, we found that Ir as a protective layer with a loading of 0.025 mg. cm(-2) on the PTLs would be sufficient to achieve the same cell performance as PTLs with a higher Ir loading. This Ir loading is a 40-fold reduction over the Au or Pt loading typically used for protective layers in current commercial PEM water electrolyzers. We show that the Ir protective layer here not only decreases the Ohmic resistance significantly, which is the largest part of the gain in performance, but moreover, the oxygen evolution reaction activity of the iridium layer makes it promising as a cost-effective catalyst layer. Our work also confirms that the proper construction of a multifunctional interface between a membrane and a PTL indeed plays a crucial role in guaranteeing the superior performance and efficiency of electrochemical devices.
引用
收藏
页码:16182 / 16196
页数:15
相关论文
共 50 条
  • [1] Dissolution of the Ti porous transport layer in proton exchange membrane water electrolyzers
    Cho, Junsic
    Kim, Dong Hyun
    Noh, Min Wook
    Kim, Haesol
    Oh, Hong-Gyun
    Lee, Pilyoung
    Yoon, Soobin
    Won, Wangyun
    Park, Young-June
    Lee, Ung
    Choi, Chang Hyuck
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (35) : 23688 - 23696
  • [2] Degradation Effects at the Porous Transport Layer/Catalyst Layer Interface in Polymer Electrolyte Membrane Water Electrolyzer
    Liu, Chang
    Shviro, Meital
    Bender, Guido
    Gago, Aldo S.
    Morawietz, Tobias
    Dzara, Michael J.
    Biswas, Indro
    Gazdzicki, Pawel
    Kang, Zhenye
    Zaccarine, Sarah F.
    Pylypenko, Svitlana
    Friedrich, K. Andreas
    Carmo, Marcelo
    Lehnert, Werner
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (03)
  • [3] Elucidating effects of catalyst loadings and porous transport layer morphologies on operation of proton exchange membrane water electrolyzers
    Kulkarni, Devashish
    Huynh, Alex
    Satjaritanun, Pongsarun
    O'Brien, Maeve
    Shimpalee, Sirivatch
    Parkinson, Dilworth
    Shevchenko, Pavel
    DeCarlo, Francesco
    Danilovic, Nemanja
    Ayers, Katherine E.
    Capuano, Christopher
    Zenyuk, Iryna, V
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 308
  • [4] High-performance porous transport layers for proton exchange membrane water electrolyzers
    Tao, Youkun
    Wu, Minhua
    Hu, Meiqi
    Xu, Xihua
    Abdullah, Muhammad I.
    Shao, Jing
    Wang, Haijiang
    SUSMAT, 2024, 4 (04):
  • [5] Mass and charge transport phenomena in porous transport layer for proton exchange membrane water electrolyzers: A review
    Lala, S. Roohan Farooq
    Shahgaldi, Samaneh
    ENERGY REPORTS, 2025, 13 : 162 - 183
  • [6] Understanding the Role of Water Flow and the Porous Transport Layer on the Performance of Proton Exchange Membrane Water Electrolyzers
    Garcia-Navarro, J.
    Schulze, M.
    Friedrich, K. A.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (01) : 1600 - 1610
  • [7] Measuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modeling
    Bock, Robert
    Karoliussen, Havard
    Seland, Frode
    Pollet, Bruno G.
    Thomassen, Magnus Skinlo
    Holdcroft, Steven
    Burheim, Odne S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (02) : 1236 - 1254
  • [8] Effect of porous transport layer properties on the anode electrode in anion exchange membrane electrolyzers
    Ul Hassan, Noor
    Motyka, Elaine
    Kweder, Jonathan
    Ganesan, Prabhu
    Brechin, Bryce
    Zulevi, Barr
    Colon-Mercado, Hector R.
    Kohl, Paul A.
    Mustain, William E.
    JOURNAL OF POWER SOURCES, 2023, 555
  • [9] Bubble dynamic behaviors in the anode porous transport layer of proton exchange membrane electrolyzers using a microfluidic reactor
    Xu, Yang
    Ye, Dingding
    Zhu, Xun
    Wang, Yang
    Yang, Yang
    Chen, Rong
    Li, Jun
    Liao, Qiang
    JOURNAL OF POWER SOURCES, 2023, 582
  • [10] THE EFFECT OF FELTMETAL™ POROUS TRANSPORT LAYER STRUCTURE ON PERFORMANCE OF ANION EXCHANGE MEMBRANE WATER ELECTROLYZERS
    Motyka, Elaine
    Volpe, Erin
    Roeseler, Stefan
    Plessinger, Ryan
    Noyes, Tyler
    Li, Chenyu
    Park, Habin
    Kohl, Paul
    Mustain, William
    Kweder, Jonathan
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 2, 2024,