Numerical bounds for the exterior degree of finite simple groups

被引:3
作者
Rodrigues, Bernardo G. [1 ]
Russo, Francesco G. [2 ,3 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, Hatfield, Herts, South Africa
[2] Univ Cape Town, Dept Math & Appl Math, Rondebosch, South Africa
[3] Univ Western Cape, Dept Math & Appl Math, Bellville, South Africa
基金
新加坡国家研究基金会;
关键词
Commutativity degree; exterior degree; finite simple groups; ower bounds; number of conjugacy classes;
D O I
10.1080/00927872.2021.1881788
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The exterior degree d<^>(G) of a finite group G is the probability that a pair (x, y) of elements x, y chosen uniformly at random in G satisfies x <^> y = 1(<^>), where <^> is the operator of nonabelian exterior square G <^> G and 1(<^>) neutral element in G <^> G. The probability d(G) that two elements of G commute is related to d<^>(G). Of course, d(G) = 1 iff G is abelian, but d<^>(G) = 1 iff G is cyclic, so we detect cyclic groups when d<^>(G) is close to 1. We present new numerical results for the exterior degree of finite simple groups.
引用
收藏
页码:2707 / 2721
页数:15
相关论文
共 37 条
[1]   Non-commuting graph of a group [J].
Abdollahi, A ;
Akbari, S ;
Maimani, HR .
JOURNAL OF ALGEBRA, 2006, 298 (02) :468-492
[2]   Finite groups have more conjugacy classes [J].
Baumeister, Barbara ;
Maroti, Attila ;
Tong-Viet, Hung P. .
FORUM MATHEMATICUM, 2017, 29 (02) :259-275
[3]   NEW REDUCTIONS AND LOGARITHMIC LOWER BOUNDS FOR THE NUMBER OF CONJUGACY CLASSES IN FINITE GROUPS [J].
Bertram, Edward A. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 87 (03) :406-424
[4]  
Beyl F.R, 1982, GROUP EXTENSIONS, V958
[5]   GROUPS OCCURRING AS CENTER FACTOR GROUPS [J].
BEYL, FR ;
FELGNER, U ;
SCHMID, P .
JOURNAL OF ALGEBRA, 1979, 61 (01) :161-177
[6]   VANKAMPEN THEOREMS FOR DIAGRAMS OF SPACES [J].
BROWN, R ;
LODAY, JL .
TOPOLOGY, 1987, 26 (03) :311-335
[7]   SOME COMPUTATIONS OF NON-ABELIAN TENSOR-PRODUCTS OF GROUPS [J].
BROWN, R ;
JOHNSON, DL ;
ROBERTSON, EF .
JOURNAL OF ALGEBRA, 1987, 111 (01) :177-202
[8]  
Castelaz A., 2010, THESIS WAKE FOREST U
[9]  
Conway J.H., 2003, ATLAS FINITE GROUPS
[10]   Commuting probabilities of finite groups [J].
Eberhard, Sean .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2015, 47 :796-808