The structure of non-zero-sum stochastic games

被引:14
|
作者
Simon, Robert Samuel [1 ]
机构
[1] London Sch Econ, Dept Math, London WC2A 2AE, England
关键词
stochastic games; equilibria; orbits of discrete time dynamical systems; martingales; Markov chains; total variation; the structure theorem in game theory;
D O I
10.1016/j.aam.2006.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Strategies in a stochastic game are delta-perfect if the induced one-stage games have certain delta-equilibrium properties. In special cases the existence of delta-perfect strategies for all positive delta implies the existence of epsilon-equilibria for every positive epsilon. Using this approach we prove the existence of epsilon-equilibria for every positive epsilon for a special class of quitting games. The proof reveals that more general proofs for the existence of epsilon-equilibria in stochastic games must involve the topological structure of how the equilibria of one-stage games are related to changes in the payoffs. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [21] Zero-Sum Stochastic Games with Partial Information and Average Payoff
    Subhamay Saha
    Journal of Optimization Theory and Applications, 2014, 160 : 344 - 354
  • [22] On Canonical Forms for Zero-Sum Stochastic Mean Payoff Games
    Boros, Endre
    Elbassioni, Khaled
    Gurvich, Vladimir
    Makino, Kazuhisa
    DYNAMIC GAMES AND APPLICATIONS, 2013, 3 (02) : 128 - 161
  • [23] A note on two-person zero-sum communicating stochastic games
    Avsar, Zeynep Muge
    Baykal-Gursoy, Melike
    OPERATIONS RESEARCH LETTERS, 2006, 34 (04) : 412 - 420
  • [24] Zero-Sum Stochastic Games over the Field of Real Algebraic Numbers
    K. Avrachenkov
    V. Ejov
    J. A. Filar
    A. Moghaddam
    Dynamic Games and Applications, 2019, 9 : 1026 - 1041
  • [25] Two-Person Zero-Sum Stochastic Games with Semicontinuous Payoff
    Laraki, R.
    Maitra, A. P.
    Sudderth, W. D.
    DYNAMIC GAMES AND APPLICATIONS, 2013, 3 (02) : 162 - 171
  • [26] Subgame Maxmin Strategies in Zero-Sum Stochastic Games with Tolerance Levels
    János Flesch
    P. Jean-Jacques Herings
    Jasmine Maes
    Arkadi Predtetchinski
    Dynamic Games and Applications, 2021, 11 : 704 - 737
  • [27] Subgame Maxmin Strategies in Zero-Sum Stochastic Games with Tolerance Levels
    Flesch, Janos
    Herings, P. Jean-Jacques
    Maes, Jasmine
    Predtetchinski, Arkadi
    DYNAMIC GAMES AND APPLICATIONS, 2021, 11 (04) : 704 - 737
  • [28] Zero-Sum Stochastic Games over the Field of Real Algebraic Numbers
    Avrachenkov, K.
    Ejov, V.
    Filar, J. A.
    Moghaddam, A.
    DYNAMIC GAMES AND APPLICATIONS, 2019, 9 (04) : 1026 - 1041
  • [29] A Tauberian Theorem for Nonexpansive Operators and Applications to Zero-Sum Stochastic Games
    Ziliotto, Bruno
    MATHEMATICS OF OPERATIONS RESEARCH, 2016, 41 (04) : 1522 - 1534
  • [30] Two-Person Zero-Sum Stochastic Games with Semicontinuous Payoff
    R. Laraki
    A. P. Maitra
    W. D. Sudderth
    Dynamic Games and Applications, 2013, 3 : 162 - 171