Why antiplectic metachronal cilia waves are optimal to transport bronchial mucus

被引:27
作者
Chateau, S. [1 ,2 ]
Favier, J. [1 ]
Poncet, S. [1 ,2 ]
D'Ortona, U. [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, M2P2, Marseille, France
[2] Univ Sherbrooke, Dept Genie Mecan, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PERICILIARY LIQUID LAYER; LATTICE BOLTZMANN METHOD; NUMERICAL SIMULATIONS; MUCOCILIARY TRANSPORT; ARTIFICIAL CILIA; CYSTIC-FIBROSIS; BEAT FREQUENCY; PROPULSION; SURFACE; PATTERN;
D O I
10.1103/PhysRevE.100.042405
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The coordinated beating of epithelial cilia in human lungs is a fascinating problem from the hydrodynamics perspective. The phase lag between neighboring cilia is able to generate collective cilia motions, known as metachronal waves. Different kinds of waves can occur, antiplectic or symplectic, depending on the direction of the wave with respect to the flow direction. It is shown here, using a coupled lattice Boltzmann-immersed boundary solver, that the key mechanism responsible for their transport efficiency is a blowing-suction effect that displaces the interface between the periciliary liquid and the mucus phase. The contribution of this mechanism on the average flow generated by the cilia is compared to the contribution of the lubrication effect. The results reveal that the interface displacement is the main mechanism responsible for the better efficiency of antiplectic metachronal waves over symplectic ones to transport bronchial mucus. The conclusions drawn here can be extended to any two-layer fluid configuration having different viscosities, and put into motion by cilia-shaped or comb-plate structures, having a back-and-forth motion with phase lags.
引用
收藏
页数:9
相关论文
共 58 条
[31]   DAMAGE OF THE AIRWAY EPITHELIUM AND BRONCHIAL REACTIVITY IN PATIENTS WITH ASTHMA [J].
LAITINEN, LA ;
HEINO, M ;
LAITINEN, A ;
KAVA, T ;
HAAHTELA, T .
AMERICAN REVIEW OF RESPIRATORY DISEASE, 1985, 131 (04) :599-606
[32]   Muco-ciliary transport: Effect of mucus viscosity, cilia beat frequency and cilia density [J].
Lee, W. L. ;
Jayathilake, P. G. ;
Tan, Zhijun ;
Le, D. V. ;
Lee, H. P. ;
Khoo, B. C. .
COMPUTERS & FLUIDS, 2011, 49 (01) :214-221
[33]   An immersed boundary-lattice Boltzmann method for single- and multi-component fluid flows [J].
Li, Zhe ;
Favier, Julien ;
D'Ortona, Umberto ;
Poncet, Sebastien .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 304 :424-440
[34]   Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method [J].
Martys, NS ;
Chen, HD .
PHYSICAL REVIEW E, 1996, 53 (01) :743-750
[35]   Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease [J].
Matsui, H ;
Grubb, BR ;
Tarran, R ;
Randell, SH ;
Gatzy, JT ;
Davis, CW ;
Boucher, RC .
CELL, 1998, 95 (07) :1005-1015
[36]   Cilia are at the heart of vertebrate left-right asymmetry [J].
McGrath, J ;
Brueckner, M .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2003, 13 (04) :385-392
[37]   Metachronal wave formation in a model of pulmonary cilia [J].
Mitran, Sorin M. .
COMPUTERS & STRUCTURES, 2007, 85 (11-14) :763-774
[38]   Ciliary metachronal wave propagation on the compliant surface of Paramecium cells [J].
Narematsu, Naoki ;
Quek, Raymond ;
Chiam, Keng-Hwee ;
Iwadate, Yoshiaki .
CYTOSKELETON, 2015, 72 (12) :633-646
[39]   Synchronization, phase locking, and metachronal wave formation in ciliary chains [J].
Niedermayer, Thomas ;
Eckhardt, Bruno ;
Lenz, Peter .
CHAOS, 2008, 18 (03)
[40]   Finding the ciliary beating pattern with optimal efficiency [J].
Osterman, Natan ;
Vilfan, Andrej .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (38) :15727-15732