Cellulose Aerogels: Synthesis, Applications, and Prospects

被引:428
作者
Long, Lin-Yu [1 ]
Weng, Yun-Xuan [1 ,2 ]
Wang, Yu-Zhong [3 ]
机构
[1] Beijing Technol & Business Univ, Sch Mat & Mech Engn, Beijing 100048, Peoples R China
[2] Beijing Technol & Business Univ, Beijing Key Lab Qual Evaluat Technol Hyg & Safety, Beijing 100048, Peoples R China
[3] Sichuan Univ, Coll Chem, Ctr Degradable & Flame Retardant Polymer Mat, Chengdu 610064, Sichuan, Peoples R China
关键词
aerogels; cellulose; sol-gel process; preparation; application; SODIUM CARBOXYMETHYL CELLULOSE; HIGH-PERFORMANCE SUPERCAPACITOR; OIL-SPILL CLEANUP; CARBON AEROGELS; BACTERIAL CELLULOSE; NANOFIBRILLATED CELLULOSE; HYBRID AEROGEL; SURFACE-AREA; NANOCRYSTALLINE CELLULOSE; NANOCELLULOSE AEROGELS;
D O I
10.3390/polym10060623
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Due to its excellent performance, aerogel is considered to be an especially promising new material. Cellulose is a renewable and biodegradable natural polymer. Aerogel prepared using cellulose has the renewability, biocompatibility, and biodegradability of cellulose, while also having other advantages, such as low density, high porosity, and a large specific surface area. Thus, it can be applied for many purposes in the areas of adsorption and oil/water separation, thermal insulation, and biomedical applications, as well as many other fields. There are three types of cellulose aerogels: natural cellulose aerogels (nanocellulose aerogels and bacterial cellulose aerogels), regenerated cellulose aerogels, and aerogels made from cellulose derivatives. In this paper, more than 200 articles were reviewed to summarize the properties of these three types of cellulose aerogels, as well as the technologies used in their preparation, such as the sol-gel process and gel drying. In addition, the applications of different types of cellulose aerogels were also introduced.
引用
收藏
页数:28
相关论文
共 245 条
[1]   The preparation of lignocellulosic aerogels from ionic liquid solutions [J].
Aaltonen, Olli ;
Jauhiainen, Olli .
CARBOHYDRATE POLYMERS, 2009, 75 (01) :125-129
[2]   Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber [J].
Abe, Kentaro ;
Yano, Hiroyuki .
CELLULOSE, 2009, 16 (06) :1017-1023
[3]  
Abu-Izza K., 1997, SOCIETY, V86, DOI [10.1021/js960461b, DOI 10.1021/JS960461B]
[4]   Porous materials for oil spill cleanup: A review of synthesis and absorbing properties [J].
Adebajo, MO ;
Frost, RL ;
Kloprogge, JT ;
Carmody, O ;
Kokot, S .
JOURNAL OF POROUS MATERIALS, 2003, 10 (03) :159-170
[5]  
Aegerter M., 2011, AEROGELS HDB ADV SOL, P173
[6]   Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil [J].
Ahmadi, Maede ;
Madadlou, Ashkan ;
Saboury, Ali Akbar .
FOOD CHEMISTRY, 2016, 196 :1016-1022
[7]   Preparation and properties of resorcinol-formaldehyde organic and carbon gels [J].
Al-Muhtaseb, SA ;
Ritter, JA .
ADVANCED MATERIALS, 2003, 15 (02) :101-+
[8]   Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix [J].
Ali, Norizan ;
El-Harbawi, Mohanad ;
Jabal, Ayman Abo ;
Yin, Chun-Yang .
ENVIRONMENTAL TECHNOLOGY, 2012, 33 (04) :481-486
[9]   Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles [J].
Aliev, Ali E. ;
Oh, Jiyoung ;
Kozlov, Mikhail E. ;
Kuznetsov, Alexander A. ;
Fang, Shaoli ;
Fonseca, Alexandre F. ;
Ovalle, Raquel ;
Lima, Marcio D. ;
Haque, Mohammad H. ;
Gartstein, Yuri N. ;
Zhang, Mei ;
Zakhidov, Anvar A. ;
Baughman, Ray H. .
SCIENCE, 2009, 323 (5921) :1575-1578
[10]   Aerogels from nanofibrillated cellulose with tunable oleophobicity [J].
Aulin, Christian ;
Netrval, Julia ;
Wagberg, Lars ;
Lindstrom, Tom .
SOFT MATTER, 2010, 6 (14) :3298-3305