Nowcasting for Real-Time COVID-19 Tracking in New York City: An Evaluation Using Reportable Disease Data From Early in the Pandemic

被引:21
作者
Greene, Sharon K. [1 ]
McGough, Sarah F. [2 ,3 ]
Culp, Gretchen M. [4 ]
Graf, Laura E. [1 ]
Lipsitch, Marc [2 ]
Menzies, Nicolas A. [5 ]
Kahn, Rebecca [2 ]
机构
[1] New York City Dept Hlth & Mental Hyg, Bur Communicable Dis, 42-09 28th St,CN 22A,WS 06-154, Long Isl City, NY 11101 USA
[2] Harvard TH Chan Sch Publ Hlth, Ctr Communicable Dis Dynam, Dept Epidemiol, Boston, MA USA
[3] Genentech Inc, San Francisco, CA 94080 USA
[4] New York City Dept Hlth & Mental Hyg, Bur Epidemiol Serv, Long Isl City, NY 11101 USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Global Hlth & Populat, Boston, MA USA
来源
JMIR PUBLIC HEALTH AND SURVEILLANCE | 2021年 / 7卷 / 01期
基金
美国安德鲁·梅隆基金会;
关键词
COVID-19; data quality; epidemiology; forecasting; infectious disease; morbidity and mortality trends; public health practice; surveillance; OUTBREAK;
D O I
10.2196/25538
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: Nowcasting approaches enhance the utility of reportable disease data for trend monitoring by correcting for delays, but implementation details affect accuracy. Objective: To support real-time COVID-19 situational awareness, the New York City Department of Health and Mental Hygiene used nowcasting to account for testing and reporting delays. We conducted an evaluation to determine which implementation details would yield the most accurate estimated case counts. Methods: A time-correlated Bayesian approach called Nowcasting by Bayesian Smoothing (NobBS) was applied in real time to line lists of reportable disease surveillance data, accounting for the delay from diagnosis to reporting and the shape of the epidemic curve. We retrospectively evaluated nowcasting performance for confirmed case counts among residents diagnosed during the period from March to May 2020, a period when the median reporting delay was 2 days. Results: Nowcasts with a 2-week moving window and a negative binomial distribution had lower mean absolute error, lower relative root mean square error, and higher 95% prediction interval coverage than nowcasts conducted with a 3-week moving window or with a Poisson distribution. Nowcasts conducted toward the end of the week outperformed nowcasts performed earlier in the week, given fewer patients diagnosed on weekends and lack of day-of-week adjustments. When estimating case counts for weekdays only, metrics were similar across days when the nowcasts were conducted, with Mondays having the lowest mean absolute error of 183 cases in the context of an average daily weekday case count of 2914. Conclusions: Nowcasting using NobBS can effectively support COVID-19 trend monitoring. Accounting for overdispersion, shortening the moving window, and suppressing diagnoses on weekends-when fewer patients submitted specimens for testing-improved the accuracy of estimated case counts. Nowcasting ensured that recent decreases in observed case counts were not overinterpreted as true declines and supported officials in anticipating the magnitude and timing of hospitalizations and deaths and allocating resources geographically.
引用
收藏
页码:180 / 188
页数:9
相关论文
共 28 条
[1]  
Annan JD, 2020, MODEL CALIBRATION NO, DOI [10.1101/2020.04.14.20065227, DOI 10.1101/2020.04.14.20065227]
[2]  
[Anonymous], 2021, COVID 19 DAT PUBL HL
[3]  
[Anonymous], 2020, GOV CUOM ANN NEW REC
[4]  
[Anonymous], 2020, 2020 HLTH ADV 15 UPD
[5]  
[Anonymous], 2020, HLTH ADV REP REQ ALL
[6]  
Bird S, 2020, NOW CASTING COVID 19
[7]   Putting the Public Back in Public Health - Surveying Symptoms of Covid-19 [J].
Chan, Andrew T. ;
Brownstein, John S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (07)
[8]   The COVID-19 pandemic: a new challenge for syndromic surveillance [J].
Elliot, Alex J. ;
Harcourt, Sally E. ;
Hughes, Helen E. ;
Loveridge, Paul ;
Morbey, Roger A. ;
Smith, Sue ;
Soriano, Ana ;
Bains, Amardeep ;
Smith, Gillian E. ;
Edeghere, Obaghe ;
Oliver, Isabel .
EPIDEMIOLOGY AND INFECTION, 2020, 148
[9]  
Goldstein J, 2020, NEW YORK TIMES
[10]   Public Health Surveillance Systems: Recent Advances in Their Use and Evaluation [J].
Groseclose, Samuel L. ;
Buckeridge, David L. .
ANNUAL REVIEW OF PUBLIC HEALTH, VOL 38, 2017, 38 :57-79