Optimal static-dynamic hedges for exotic options under convex risk measures

被引:14
作者
Ilhan, Aytac [2 ]
Jonsson, Mattias [3 ]
Sircar, Ronnie [1 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[2] Math & Computat Finance Grp, Oxford OX1 3LB, England
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
Risk measures; Hedging; Exotic options; UTILITY; PRICES;
D O I
10.1016/j.spa.2009.06.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the problem of optimally hedging exotic derivatives positions using a combination of dynamic trading strategies in underlying stocks and static positions in vanilla options when the performance is quantified by a convex risk measure. We establish conditions for the existence of an optimal static position for general convex risk measures, and then analyze in detail the case of shortfall risk with a power loss function. Here we find conditions for uniqueness of the static hedge. We illustrate the computational challenge of computing the market-adjusted risk measure in a simple diffusion model for an option on a non-traded asset. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3608 / 3632
页数:25
相关论文
共 30 条
  • [1] Albeverio S, 2003, LECT NOTES MATH, V1816, P1
  • [2] [Anonymous], 2005, CONTROLLED MARKOV PR
  • [3] Coherent measures of risk
    Artzner, P
    Delbaen, F
    Eber, JM
    Heath, D
    [J]. MATHEMATICAL FINANCE, 1999, 9 (03) : 203 - 228
  • [4] Inf-convolution of risk measures and optimal risk transfer
    Barrieu, P
    El Karoui, N
    [J]. FINANCE AND STOCHASTICS, 2005, 9 (02) : 269 - 298
  • [5] Barrieu P, 2009, PRINC SER FINANC ENG, P77
  • [6] Dual formulation of the utility maximization problem: The case of nonsmooth utility
    Bouchard, B
    Touzi, N
    Zeghal, A
    [J]. ANNALS OF APPLIED PROBABILITY, 2004, 14 (02) : 678 - 717
  • [7] Carmona R, 2009, PRINC SER FINANC ENG, P1
  • [8] Carr P., 1994, Risk, V7, P45
  • [9] CVITANIC J, 1999, FINANCE STOCHASTICS, V3
  • [10] Exponential hedging and entropic penalties
    Delbaen, F
    Grandits, P
    Rheinländer, T
    Samperi, D
    Schweizer, M
    Stricker, C
    [J]. MATHEMATICAL FINANCE, 2002, 12 (02) : 99 - 123