Evolution of MHC-based technologies used for detection of antigen-responsive T cells

被引:61
作者
Bentzen, Amalie Kai [1 ]
Hadrup, Sine Reker [1 ]
机构
[1] Tech Univ Denmark, Sect Immunol & Vaccinol, Natl Vet Inst, Copenhagen, Denmark
关键词
MHC multimer; T cell receptor; MHC class I; Antigen specificity; DNA barcode-labeled MHC multimers; CLASS-I MOLECULES; MASS CYTOMETRY; CONDITIONAL LIGANDS; P/MHC MICROARRAYS; BINDING-AFFINITY; PEPTIDE EXCHANGE; HUMAN-MELANOMA; COMPLEXES; BLOCKADE; DESIGN;
D O I
10.1007/s00262-017-1971-5
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
T cell-mediated recognition of peptide-major histocompatibility complex (pMHC) class I and II molecules is crucial for the control of intracellular pathogens and cancer, as well as for stimulation and maintenance of efficient cytotoxic responses. Such interactions may also play a role in the development of autoimmune diseases. Novel insights into this mechanism are crucial to understanding disease development and establishing new treatment strategies. MHC multimers have been used for detection of antigen-responsive T cells since the first report by Altman et al. showed that tetramerization of pMHC class I molecules provided sufficient stability to T cell receptor (TCR)-pMHC interactions, allowing detection of MHC multimer-binding T cells using flow cytometry. Since this breakthrough the scientific community has aimed for expanding the capacity of MHC multimer-based detection technologies to facilitate large-scale epitope discovery and immune monitoring in limited biological material. Screening of T cell specificity using large libraries of pMHC molecules is suitable for analyses of T cell recognition potentially at genome-wide levels rather than analyses restricted to a selection of model antigens. Such strategies provide novel insights into the immune specificities involved in disease development and response to immunotherapy, and extend fundamental knowledge related to T cell recognition patterns and cross-recognition by TCRs. MHC multimer-based technologies have now evolved from detection of 1-2 different T cell specificities per cell sample, to include more than 1000 evaluable pMHC molecules using novel technologies. Here, we provide an overview of MHC multimer-based detection technologies developed over two decades, focusing primarily on MHC class I interactions.
引用
收藏
页码:657 / 666
页数:10
相关论文
共 46 条
[1]   Phenotypic analysis of antigen-specific T lymphocytes [J].
Altman, JD ;
Moss, PAH ;
Goulder, PJR ;
Barouch, DH ;
McHeyzerWilliams, MG ;
Bell, JI ;
McMichael, AJ ;
Davis, MM .
SCIENCE, 1996, 274 (5284) :94-96
[2]   Dissection of T-cell Antigen Specificity in Human Melanoma [J].
Andersen, Rikke Sick ;
Thrue, Charlotte Albaek ;
Junker, Niels ;
Lyngaa, Rikke ;
Donia, Marco ;
Ellebaek, Eva ;
Svane, Inge Marie ;
Schumacher, Ton N. ;
Straten, Per Thor ;
Hadrup, Sine Reker .
CANCER RESEARCH, 2012, 72 (07) :1642-1650
[3]   Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification [J].
Andreatta, Massimo ;
Karosiene, Edita ;
Rasmussen, Michael ;
Stryhn, Anette ;
Buus, Soren ;
Nielsen, Morten .
IMMUNOGENETICS, 2015, 67 (11-12) :641-650
[4]   MHC multimer technology: current status and future prospects [J].
Bakker, AH ;
Schumacher, TNM .
CURRENT OPINION IN IMMUNOLOGY, 2005, 17 (04) :428-433
[5]   Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11 and -B7 [J].
Bakker, Arnold H. ;
Hoppes, Rieuwert ;
Linnemann, Carsten ;
Toebes, Mireille ;
Rodenko, Boris ;
Berkers, Celia R. ;
Hadrup, Sine Reker ;
van Esch, Wirn J. E. ;
Heemskerk, Mirjam H. M. ;
Ovaa, Huib ;
Schumacher, Ton N. M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (10) :3825-3830
[6]   Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry [J].
Bandura, Dmitry R. ;
Baranov, Vladimir I. ;
Ornatsky, Olga I. ;
Antonov, Alexei ;
Kinach, Robert ;
Lou, Xudong ;
Pavlov, Serguei ;
Vorobiev, Sergey ;
Dick, John E. ;
Tanner, Scott D. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :6813-6822
[7]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696
[8]   Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes [J].
Bentzen, Amalie Kai ;
Marquard, Andrea Marion ;
Lyngaa, Rikke ;
Saini, Sunil Kumar ;
Ramskov, Sofie ;
Donia, Marco ;
Such, Lina ;
Furness, Andrew J. S. ;
McGranahan, Nicholas ;
Rosenthal, Rachel ;
Straten, Per Thor ;
Szallasi, Zoltan ;
Svane, Inge Marie ;
Swanton, Charles ;
Quezada, Sergio A. ;
Jakobsen, Soren Nyboe ;
Eklund, Aron Charles ;
Hadrup, Sine Reker .
NATURE BIOTECHNOLOGY, 2016, 34 (10) :1037-1045
[9]   MHC Class II Tetramers Made from Isolated Recombinant α and β Chains Refolded with Affinity-Tagged Peptides [J].
Braendstrup, Peter ;
Justesen, Sune ;
Osterbye, Thomas ;
Nielsen, Lise Lotte Bruun ;
Mallone, Roberto ;
Vindelov, Lars ;
Stryhn, Anette ;
Buus, Soren .
PLOS ONE, 2013, 8 (09) :e73648
[10]   Application of the pMHC Array to Characterise Tumour Antigen Specific T Cell Populations in Leukaemia Patients at Disease Diagnosis [J].
Brooks, Suzanne E. ;
Bonney, Stephanie A. ;
Lee, Cindy ;
Publicover, Amy ;
Khan, Ghazala ;
Smits, Evelien L. ;
Sigurdardottir, Dagmar ;
Arno, Matthew ;
Li, Demin ;
Mills, Ken I. ;
Pulford, Karen ;
Banham, Alison H. ;
van Tendeloo, Viggo ;
Mufti, Ghulam J. ;
Rammensee, Hans-Georg ;
Elliott, Tim J. ;
Orchard, Kim H. ;
Guinn, Barbara-ann .
PLOS ONE, 2015, 10 (10)