One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance

被引:57
作者
Ali, Gomaa A. M. [1 ,2 ]
Yusoff, Mashitah M. [1 ]
Algarni, H. [3 ,4 ]
Chong, Kwok Feng [1 ]
机构
[1] Univ Malaysia Pahang, Fac Ind Sci & Technol, Gambang 26300, Pahang, Malaysia
[2] Al Azhar Univ, Chem Dept, Fac Sci, Assiut 71524, Egypt
[3] King Khalid Univ, RCAMS, POB 9004, Abha 61413, Saudi Arabia
[4] King Khalid Univ, Fac Sci, Dept Phys, POB 9004, Abha, Saudi Arabia
关键词
Manganese oxide; Energy storage; Supercapacitors; Electron transfer; Graphene; REDUCED GRAPHENE OXIDE; SUPERCAPACITOR ELECTRODES; MN3O4; NANOPARTICLES; REDOX REACTION; COMPOSITE; CARBON; NANOSPHERES; TEMPERATURE; NANOSHEETS; SURFACE;
D O I
10.1016/j.ceramint.2018.01.212
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a facile one-step electrochemical approach to generate MnO2/rGO nanocomposite from a mixture of Mn3O4 and graphene oxide (GO). The electrochemical conversion of Mn3O4 into MnO2 through potential cycling is expedited in the presence of GO while the GO is reduced into reduced graphene oxide (rGO). The MnO2 nanoparticles are evenly distributed on the rGO nanosheets and act as the spacer to prevent rGO nanosheets from restacking. This unique structure provides high electroactive surface area (1173 m(2) g(-1)) that improves ions diffusion within the MnO2/rGO structure. As a result, the MnO2/rGO nanocomposite exhibits high specific capacitance of 473 F g(-1) at 0.25 A g(-1), which is remarkably higher (3 times) than the Mn3O4/GO prior conversion. In addition, the electrosynthesized nanocomposite shows higher conductivity and excellent potential cycling stability of 95% at 2000 cycles.
引用
收藏
页码:7799 / 7807
页数:9
相关论文
共 64 条
[1]  
Ali GAM, 2016, ARPN Journal of Engineering and Applied Sciences, V11, P9712
[2]   Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach [J].
Ali, Gomaa A. M. ;
Divyashree, A. ;
Supriya, S. ;
Chong, Kwok Feng ;
Ethiraj, Anita S. ;
Reddy, M. V. ;
Algarni, H. ;
Hegde, Gurumurthy .
DALTON TRANSACTIONS, 2017, 46 (40) :14034-14044
[3]   Capacitive performance of cysteamine functionalized carbon nanotubes [J].
Ali, Gomaa A. M. ;
Teo, Ellie Yi Lih ;
Aboelazm, Eslam A. A. ;
Sadegh, Hamidreza ;
Memar, Amir O. H. ;
Shahryari-Ghoshekandi, Ramin ;
Chong, Kwok Feng .
MATERIALS CHEMISTRY AND PHYSICS, 2017, 197 :100-104
[4]   High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries [J].
Ali, Gomaa A. M. ;
Yusoff, Mashitah M. ;
Shaaban, Essam R. ;
Chong, Kwok Feng .
CERAMICS INTERNATIONAL, 2017, 43 (11) :8440-8448
[5]   Potentiostatic and galvanostatic electrodeposition of manganese oxide for supercapacitor application: A comparison study [J].
Ali, Gomaa A. M. ;
Yusoff, Mashitah M. ;
Ng, Yun Hau ;
Lim, Hong Ngee ;
Chong, Kwok Feng .
CURRENT APPLIED PHYSICS, 2015, 15 (10) :1143-1147
[6]  
Ali GAM, 2015, REV ADV MATER SCI, V41, P35
[7]   Calcium-based nanosized mixed metal oxides for supercapacitor application [J].
Ali, Gomaa A. M. ;
Wahba, Osama A. G. ;
Hassan, Ali M. ;
Fouad, Osama A. ;
Chong, Kwok Feng .
CERAMICS INTERNATIONAL, 2015, 41 (06) :8230-8234
[8]   Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery [J].
Ali, Gomaa A. M. ;
Tan, Ling Ling ;
Jose, Rajan ;
Yusoff, Mashitah M. ;
Chong, Kwok Feng .
MATERIALS RESEARCH BULLETIN, 2014, 60 :5-9
[9]   High performance supercapacitor using catalysis free porous carbon nanoparticles [J].
Ali, Gomaa A. M. ;
Manaf, Shoriya Aruni Bt Abdul ;
Kumar, Anuj ;
Chong, Kwok Feng ;
Hegde, Gurumurthy .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (49)
[10]   Co3O4/SiO2 nanocomposites for supercapacitor application [J].
Ali, Gomaa A. M. ;
Fouad, Osama A. ;
Makhlouf, Salah A. ;
Yusoff, Mashitah M. ;
Chong, Kwok Feng .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (09) :2505-2512