Humidity and Temperature Dual Flexible Microwave Sensor

被引:3
作者
Ngoune, Bernard Bobby [1 ]
Hallil, Hamida [1 ]
Bila, Stephane [2 ]
Baillargeat, Dominique [2 ]
Bondu, Benoit [3 ]
Cloutet, Eric [4 ]
Dejous, Corinne [1 ]
机构
[1] Univ Bordeaux, Bordeaux INP, CNRS, IMS,UMR 5218, F-33400 Talence, France
[2] Univ Limoges, CNRS, XLIM UMR 7252, F-87060 Limoges, France
[3] ISORG, Pessac, France
[4] Univ Bordeaux, LCPO, UMR 5629, ENSCBP,IPB, Pessac, France
来源
2022 29TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (IEEE ICECS 2022) | 2022年
关键词
Dual microwave sensor; Humidity; Temperature; Polymer sensitive material; passive resonator;
D O I
10.1109/ICECS202256217.2022.9971127
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A dual flexible microwave sensor is presented for humidity and temperature sensing. The sensor consists of two microstrip interdigitated resonators printed on a flexible Kapton substrate. One resonator is coated with polyethyleneimine silane 1:0.5 and the other is left uncoated. The coated resonator at 3.26 GHz showed a good sensitivity of 0.45 MHz/%RH and -0.01 dB/%RH in a range of 35 - 85 % RH, with low hysteresis (<5%), and -0.192 MHz/degrees C and 0.01 dB/degrees C in a range of 30 - 45 degrees C. On the other hand, the uncoated resonator showed a linear response and high hysteresis (> 30%) with a low sensitivity of -0.045 MHz/%RH and similar to 0 dB/%RH under humidity. It showed a temperature sensitivity of 0.07 MHz/degrees C and 0.01 dB/degrees C. RH sensitivity does not vary with temperature for both the coated and uncoated resonators. The uncoated resonator showed a distinct RH-independent temperature sensitivity in magnitude which makes it easier to decorrelate variations of both parameters.
引用
收藏
页数:4
相关论文
共 11 条
  • [1] Microwave flexible gas sensor based on polymer multi wall carbon nanotubes sensitive layer
    Bahoumina, P.
    Hallil, H.
    Lachaud, J. L.
    Abdelghani, A.
    Frigui, K.
    Bila, S.
    Baillargeat, D.
    Ravichandran, A.
    Coquet, P.
    Paragua, C.
    Pichonat, E.
    Happy, H.
    Rebiere, D.
    Dejous, C.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2017, 249 : 708 - 714
  • [2] Chen R. R. M. W.T, 2017, RF HUMIDITY SENSOR I
  • [3] Dhall S., 2021, Sens. Int., V2, DOI DOI 10.1016/J.SINTL.2021.100116
  • [4] Passive Resonant Sensors: Trends and Future Prospects
    Hallil, Hamida
    Dejous, Corinne
    Hage-Ali, Sami
    Elmazria, Omar
    Rossignol, Jerome
    Stuerga, Didier
    Talbi, Abdelkrim
    Mazzamurro, Aurelien
    Joubert, Pierre-Yves
    Lefeuvre, Elie
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (11) : 12618 - 12632
  • [5] Discrimination of gases with a single chemiresistive multi-gas sensor using temperature sweeping and machine learning
    Kanaparthi, Srinivasulu
    Singh, Shiv Govind
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2021, 348
  • [6] Kapton Dupont, 2022, DATASHEET
  • [7] Wireless Passive Microwave Antenna-Integrated Temperature Sensor Based on CSRR
    Kou, Hairong
    Yang, Libo
    Zhang, Xiaoyong
    Shang, Zhenzhen
    Shi, Junbing
    Wang, Xiaoli
    [J]. MICROMACHINES, 2022, 13 (04)
  • [8] Kumar S, 2020, B MATER SCI, V43, DOI 10.1007/s12034-020-2043-6
  • [9] Inkjet-Printed Graphene Oxide Thin Layers on Love Wave Devices for Humidity and Vapor Detection
    Nikolaou, Ioannis
    Hallil, Hamida
    Conedera, Veronique
    Deligeorgis, George
    Dejous, Corinne
    Rebiere, Dominique
    [J]. IEEE SENSORS JOURNAL, 2016, 16 (21) : 7620 - 7627
  • [10] A real-time response relative humidity sensor based on a loop microfiber coated with polyvinyl alcohol film
    Sun, Dandan
    Chen, Jiguang
    Fu, Yongming
    Ma, Jie
    [J]. MEASUREMENT, 2022, 187