Enhanced sensitivity of distributed-temperature sensor with Al-coated fiber based on OFDR

被引:19
作者
Kwon, Yong-Seok [1 ,2 ]
Naeem, Khurram [1 ]
Jeon, Min Yong [2 ]
Kwon, Il-Bum [1 ]
机构
[1] KRISS, Ctr Safety Measurement, 267 Gajeong Ro, Daejeon 34113, South Korea
[2] Chungnam Natl Univ, Dept Phys, 99 Daehak Ro, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
Optical frequency-domain reflectometry; Distributed sensor; Temperature sensitivity; Al-coated fiber; Thermal expansion; RAYLEIGH BACKSCATTER;
D O I
10.1016/j.yofte.2019.01.021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a distributed-optical fiber temperature sensor with enhanced sensitivity with Al coating using the Rayleigh backscattering (RBS) spectrum shift measured via optical frequency-domain reflectometry (OFDR). The Al-coated sensing fiber having a larger thermal expansion coefficient than that of silica produces a strain-coupled shift in the RBS under an increase in temperature. This effect leads to an enhanced temperature sensitivity of the distributed measurement scheme. In order to analyze the principle of temperature sensitivity enhancement, a simple analysis was performed by considering the fiber directional strain and force equilibrium between the optical fiber and Al-coated layer. Our results revealed that the temperature sensitivity achieved with the Al-coated fiber in OFDR was similar to 56% higher relative to that of a single-mode fiber.
引用
收藏
页码:229 / 234
页数:6
相关论文
共 18 条
[1]   Recent Progress in Distributed Fiber Optic Sensors [J].
Bao, Xiaoyi ;
Chen, Liang .
SENSORS, 2012, 12 (07) :8601-8639
[2]   High resolution monitoring of strain fields in concrete during hydraulic fracturing processes [J].
Chen, Rongzhang ;
Zaghloul, Mohamed A. S. ;
Yan, Aidong ;
Li, Shuo ;
Lu, Guanyi ;
Ames, Brandon C. ;
Zolfaghari, Navid ;
Bunger, Andrew P. ;
Li, Ming-Jun ;
Chen, Kevin P. .
OPTICS EXPRESS, 2016, 24 (04) :3894-3902
[3]   Distributed high-temperature pressure sensing using air-hole microstructural fibers [J].
Chen, Tong ;
Wang, Qingqing ;
Chen, Rongzhang ;
Zhang, Botao ;
Jewart, Charles ;
Chen, Kevin P. ;
Maklad, Mokhtar ;
Swinehart, Phillip R. .
OPTICS LETTERS, 2012, 37 (06) :1064-1066
[4]   Use of Distributed Temperature Sensing Technology to Characterize Fire Behavior [J].
Cram, Douglas ;
Hatch, Christine E. ;
Tyler, Scott ;
Ochoa, Carlos .
SENSORS, 2016, 16 (10)
[5]   Note: Improving distributed strain sensing sensitivity in OFDR by reduced-cladding single mode fiber [J].
Ding, Zhenyang ;
Yang, Di ;
Du, Yang ;
Zhou, Yonghan ;
Xu, Zhexi ;
Liu, Kun ;
Jiang, Junfeng ;
Liu, Tiegen .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (12)
[6]   Distributed magnetic field sensor based on magnetostriction using Rayleigh backscaftering spectra shift in optical frequency-domain reflectometry [J].
Du, Yang ;
Lu, Tiegen ;
Ding, Zhenyang ;
Liu, Kun ;
Feng, Bowen ;
Jiang, Junfeng .
Applied Physics Express, 2015, 8 (01)
[7]   Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry [J].
Li, Wenhai ;
Chen, Liang ;
Bao, Xiaoyi .
OPTICS COMMUNICATIONS, 2014, 311 :26-32
[8]   Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry [J].
Liehr, Sascha ;
Wendt, Mario ;
Krebber, Katerina .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2010, 21 (09)
[9]   Impact of the Fiber Coating on the Temperature Response of Distributed Optical Fiber Sensors at Cryogenic Ranges [J].
Lu, Xin ;
Soto, Marcelo A. ;
Thevenaz, Luc .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (04) :961-967
[10]   Bend-Loss-Free Distributed Sensor Based on Rayleigh Backscattering in Ge-Doped-Core PCF [J].
Naeem, Khurram ;
Kwon, Yong-Seok ;
Chung, Youngjoo ;
Kwon, Il-Bum .
IEEE SENSORS JOURNAL, 2018, 18 (05) :1903-1910