CRISPR/Cas9-based tools for targeted genome editing and replication control of HBV

被引:19
作者
Peng, Cheng [1 ]
Lu, Mengji [2 ]
Yang, Dongliang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Infect Dis, Wuhan 430022, Peoples R China
[2] Univ Duisburg Essen, Univ Hosp Essen, Inst Virol, D-45122 Essen, Germany
基金
中国国家自然科学基金;
关键词
hepatitis B virus (HBV); CRISPR/Cas9; covalently closed circular DNA (cccDNA); antiviral therapy; HEPATITIS-B-VIRUS; CLOSED CIRCULAR DNA; ONE-STEP GENERATION; MOLECULAR-BIOLOGY; IMMUNE-RESPONSES; HUMAN-CELLS; IN-VIVO; SYSTEM; CRISPR; CAS9;
D O I
10.1007/s12250-015-3660-x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Hepatitis B virus (HBV) infection remains a major global health problem because current therapies rarely eliminate HBV infections to achieve a complete cure. A different treatment paradigm to effectively clear HBV infection and eradicate latent viral reservoirs is urgently required. In recent years, the development of a new RNA-guided gene-editing tool, the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) system, has greatly facilitated site-specific mutagenesis and represents a very promising potential therapeutic tool for diseases, including for eradication of invasive pathogens such as HBV. Here, we review recent advances in the use of CRISPR/Cas9, which is designed to target HBV specific DNA sequences to inhibit HBV replication and to induce viral genome mutation, in cell lines or animal models. Advantages, limitations and possible solutions, and proposed directions for future research are discussed to highlight the opportunities and challenges of CRISPR/Cas9 as a new, potentially curative therapy for chronic hepatitis B infection.
引用
收藏
页码:317 / 325
页数:9
相关论文
共 69 条
[11]   The new frontier of genome engineering with CRISPR-Cas9 [J].
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2014, 346 (6213) :1077-+
[12]   Native hepatitis B virions and capsids visualized by electron cryornicroscopy [J].
Dryden, Kelly A. ;
Wieland, Stefan F. ;
Whitten-Bauer, Christina ;
Gerin, John L. ;
Chisari, Francis V. ;
Yeager, Mark .
MOLECULAR CELL, 2006, 22 (06) :843-850
[13]  
Esvelt KM, 2013, NAT METHODS, V10, P1116, DOI [10.1038/nmeth.2681, 10.1038/NMETH.2681]
[14]   Improving CRISPR-Cas nuclease specificity using truncated guide RNAs [J].
Fu, Yanfang ;
Sander, Jeffry D. ;
Reyon, Deepak ;
Cascio, Vincent M. ;
Joung, J. Keith .
NATURE BIOTECHNOLOGY, 2014, 32 (03) :279-284
[15]   High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells [J].
Fu, Yanfang ;
Foden, Jennifer A. ;
Khayter, Cyd ;
Maeder, Morgan L. ;
Reyon, Deepak ;
Joung, J. Keith ;
Sander, Jeffry D. .
NATURE BIOTECHNOLOGY, 2013, 31 (09) :822-+
[16]   THE MOLECULAR-BIOLOGY OF THE HEPATITIS-B VIRUSES [J].
GANEM, D ;
VARMUS, HE .
ANNUAL REVIEW OF BIOCHEMISTRY, 1987, 56 :651-693
[17]   The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA [J].
Garneau, Josiane E. ;
Dupuis, Marie-Eve ;
Villion, Manuela ;
Romero, Dennis A. ;
Barrangou, Rodolphe ;
Boyaval, Patrick ;
Fremaux, Christophe ;
Horvath, Philippe ;
Magadan, Alfonso H. ;
Moineau, Sylvain .
NATURE, 2010, 468 (7320) :67-71
[18]   Gene therapeutic approaches to inhibit hepatitis B virus replication [J].
Gebbing, Maren ;
Bergmann, Thorsten ;
Schulz, Eric ;
Ehrhardt, Anja .
WORLD JOURNAL OF HEPATOLOGY, 2015, 7 (02) :150-164
[19]   Update on Hepatitis B Virus Infection: Focus on Treatment [J].
Hadziyannis, Stephanos J. .
JOURNAL OF CLINICAL AND TRANSLATIONAL HEPATOLOGY, 2014, 2 (04) :285-291
[20]   A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes [J].
Haft, DH ;
Selengut, J ;
Mongodin, EF ;
Nelson, KE .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (06) :474-483