Resource Allocation for Energy Harvesting-Powered D2D Communications Underlaying NOMA-Based Networks

被引:12
作者
Chen, Bo [1 ]
Liu, Juan [1 ]
Yang, Xinjie [1 ]
Xie, Lingfu [1 ]
Li, Youming [1 ]
机构
[1] Ningbo Univ, Coll Informat & Elect Engn, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
D2D; NOMA; energy harvesting; resource allocation; cellular networks; NONORTHOGONAL MULTIPLE-ACCESS; TO-DEVICE COMMUNICATION; 5G SYSTEMS;
D O I
10.1109/ACCESS.2019.2913041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the resource allocation problem in device-to-device (D2D) communications underlaying a non-orthogonal multiple access (NOMA)-based cellular network with energy harvesting, where the energy harvesting-powered D2D communications share the downlink resources of the cellular network. To fully exploit the high-data-rate D2D links in this system, a two-phase framework is proposed for D2D users. In particular, the D2D users harvest energy from the base station (BS) in the first phase and then transmit their own information using the harvested energy in the second one. Meanwhile, the D2D communications could cause severe interference to cellular users (CUs) and hence probably ruin the SIC decoding order of the CUs. To deal with this issue, joint power allocation and time scheduling scheme is proposed to maximize the throughput of the D2D links while guaranteeing the quality of service (QoS) for each CU. Through rigorous derivation, the optimal power control and time scheduling parameters are analyzed to simplify the optimization problem formulation. The closed-form optimal solution is derived in some cases. In other cases, a gradient-based algorithm is employed to find an appropriate sub-optimal solution. The simulation results are demonstrated to validate the superiority of the proposed scheme over the conventional orthogonal multiple access (OMA) scheme.
引用
收藏
页码:61442 / 61451
页数:10
相关论文
共 21 条
[1]  
[Anonymous], P IEEE INT C COMM SY
[2]  
[Anonymous], VEH TECHN C 2009 VTC
[3]  
Boyd Stephen P., 2014, Convex Optimization
[4]   A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends [J].
Ding, Zhiguo ;
Lei, Xianfu ;
Karagiannidis, George K. ;
Schober, Robert ;
Yuan, Jinhong ;
Bhargava, Vijay K. .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2017, 35 (10) :2181-2195
[5]   On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users [J].
Ding, Zhiguo ;
Yang, Zheng ;
Fan, Pingzhi ;
Poor, H. Vincent .
IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (12) :1501-1505
[6]  
Dinkelbach W., 1967, MANAGE SCI, V13, P492, DOI [https://doi.org/10.1287/mnsc.13.7.492, 10.1287/mnsc.13.7.492]
[7]   Device-to-Device Communication as an Underlay to LTE-Advanced Networks [J].
Doppler, Klaus ;
Rinne, Mika ;
Wijting, Carl ;
Ribeiro, Cassio B. ;
Hugl, Klaus .
IEEE COMMUNICATIONS MAGAZINE, 2009, 47 (12) :42-49
[8]   Device-to-Device Communications Underlaying Cellular Networks [J].
Feng, Daquan ;
Lu, Lu ;
Yi Yuan-Wu ;
Li, Geoffrey Ye ;
Feng, Gang ;
Li, Shaoqian .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2013, 61 (08) :3541-3551
[9]   Design Aspects of Network Assisted Device-to-Device Communications [J].
Fodor, Gabor ;
Dahlman, Erik ;
Mildh, Gunnar ;
Parkvall, Stefan ;
Reider, Norbert ;
Miklos, Gyorgy ;
Turanyi, Zoltan .
IEEE COMMUNICATIONS MAGAZINE, 2012, 50 (03) :170-177
[10]   Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges [J].
Islam, S. M. Riazul ;
Avazov, Nurilla ;
Dobre, Octavia A. ;
Kwak, Kyung-Sup .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (02) :721-742