An enhanced LGSA-SVM for S&P 500 index forecast

被引:0
|
作者
Wang, Jinxin [1 ]
Liu, Zhengyang [1 ]
Shang, Wei [1 ]
Wang, Shouyang [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2017年
关键词
S&P 500; SVM; Gravitational Search Algorithm; Logistic Mapping; Opposition Based Learning; GRAVITATIONAL SEARCH ALGORITHM; NEURAL-NETWORKS; STOCK INDEXES; MARKET; VOLATILITY; FUTURES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The S&P 500 index is an important representative of worlds' financial market and is influenced by various economic factors. There is a call for automatically select antecedents of S&P 500 index's change in the fast-changing world economy. This paper proposes an enhanced GSA model named LGSA to solve the feature selection and parameter optimization of SVM models for the S&P 500 index movement prediction. The results show that the accuracy of LGSA-SVM model surpasses benchmark SVM, PSO-SVM and GA-SVM model. And the proposed approach could hopefully be adopted for other financial data series automatic forecasting.
引用
收藏
页码:4176 / 4183
页数:8
相关论文
共 50 条
  • [21] Pricing S&P 500 Index Options: A Conditional Semi-Nonparametric Approach
    Guidolin, Massimo
    Hansen, Erwin
    JOURNAL OF FUTURES MARKETS, 2016, 36 (03) : 217 - 239
  • [22] Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index
    Yousaf, Imran
    Youssef, Manel
    Goodell, John W.
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2022, 83
  • [23] Investing in the S&P 500 index: Can anything beat the buy-and-hold strategy?
    Dichtl, Hubert
    REVIEW OF FINANCIAL ECONOMICS, 2020, 38 (02) : 352 - 378
  • [24] Investors' Heterogeneity in Beliefs, the VIX Futures Basis, and S&P 500 Index Futures Returns
    Lee, Hsiu-Chuan
    Liao, Tzu-Hsiang
    Tung, Pao-Ying
    JOURNAL OF FUTURES MARKETS, 2017, 37 (09) : 939 - 960
  • [25] Bayesian portfolio selection: An empirical analysis of the S&P 500 index 1970-1996
    Polson, NG
    Tew, BV
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2000, 18 (02) : 164 - 173
  • [26] Consistent modeling of S&P 500 and VIX derivatives
    Lin, Yueh-Neng
    Chang, Chien-Hung
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2010, 34 (11) : 2302 - 2319
  • [27] A test of efficiency for the S&P 500 index option market using the generalized spectrum method
    Huang, Henry H.
    Wang, Kent
    Wang, Zhanglong
    JOURNAL OF BANKING & FINANCE, 2016, 64 : 52 - 70
  • [28] Dynamic Dependence Between Liquidity and the S&P 500 Index Futures-Cash Basis
    Lien, Donald
    Lim, Gerui
    Yang, Li
    Zhou, Chunyang
    JOURNAL OF FUTURES MARKETS, 2013, 33 (04) : 327 - 342
  • [29] Forecasting relative returns for S&P 500 stocks using machine learning
    Htun, Htet Htet
    Biehl, Michael
    Petkov, Nicolai
    FINANCIAL INNOVATION, 2024, 10 (01)
  • [30] Modelling of S&P 500 Index Price Based on US Economic Indicators: Machine Learning Approach
    Gaspareniene, Ligita
    Remeikiene, Rita
    Sosidko, Aleksejus
    Vebraite, Vigita
    INZINERINE EKONOMIKA-ENGINEERING ECONOMICS, 2021, 32 (04): : 362 - 375