An enhanced LGSA-SVM for S&P 500 index forecast

被引:0
|
作者
Wang, Jinxin [1 ]
Liu, Zhengyang [1 ]
Shang, Wei [1 ]
Wang, Shouyang [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2017年
关键词
S&P 500; SVM; Gravitational Search Algorithm; Logistic Mapping; Opposition Based Learning; GRAVITATIONAL SEARCH ALGORITHM; NEURAL-NETWORKS; STOCK INDEXES; MARKET; VOLATILITY; FUTURES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The S&P 500 index is an important representative of worlds' financial market and is influenced by various economic factors. There is a call for automatically select antecedents of S&P 500 index's change in the fast-changing world economy. This paper proposes an enhanced GSA model named LGSA to solve the feature selection and parameter optimization of SVM models for the S&P 500 index movement prediction. The results show that the accuracy of LGSA-SVM model surpasses benchmark SVM, PSO-SVM and GA-SVM model. And the proposed approach could hopefully be adopted for other financial data series automatic forecasting.
引用
收藏
页码:4176 / 4183
页数:8
相关论文
共 50 条
  • [11] Mispricing and trader positions in the S&P 500 index futures market
    Lai, Ya-Wen
    Lin, Chiou-Fa
    Tang, Mei-Ling
    NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2017, 42 : 250 - 265
  • [12] A multi-component nonlinear prediction system for the S&P 500 Index
    Chenoweth, T
    Obradovic, Z
    NEUROCOMPUTING, 1996, 10 (03) : 275 - 290
  • [13] S&P 500 INDEX-FUTURES PRICE JUMPS AND MACROECONOMIC NEWS
    Miao, Hong
    Ramchander, Sanjay
    Zumwalt, J. Kenton
    JOURNAL OF FUTURES MARKETS, 2014, 34 (10) : 980 - 1001
  • [14] A hybrid modeling approach for forecasting the volatility of S&P 500 index return
    Hajizadeh, E.
    Seifi, A.
    Zarandi, M. N. Fazel
    Turksen, I. B.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (01) : 431 - 436
  • [15] A comprehensive long-term analysis of S&P 500 index additions and deletions
    Chan, Kalok
    Kot, Hung Wan
    Tang, Gordon Y. N.
    JOURNAL OF BANKING & FINANCE, 2013, 37 (12) : 4920 - 4930
  • [16] Risk aversion, fanning preference and volatility smirk on S&P 500 index options
    Chen, Jian
    Ma, Chenghu
    APPLIED ECONOMICS, 2016, 48 (35) : 3277 - 3292
  • [17] Using neural networks to forecast the S&P 100 implied volatility
    Malliaris, M
    Salchenberger, L
    NEUROCOMPUTING, 1996, 10 (02) : 183 - 195
  • [18] Time series analysis of S&P 500 index: A horizontal visibility graph approach
    Vamvakaris, Michail D.
    Pantelous, Athanasios A.
    Zuev, Konstantin M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 497 : 41 - 51
  • [19] A new method for jump detection: analysis of jumps in the S&P 500 financial index
    Khashanah, Khaldoun
    Chen, Jing
    Buckle, Mike
    Hawkes, Alan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2025,
  • [20] Using neural networks for forecasting volatility of S&P 500 Index futures prices
    Hamid, SA
    Iqbal, Z
    JOURNAL OF BUSINESS RESEARCH, 2004, 57 (10) : 1116 - 1125